×

Low eigenvalues of Laplacian matrices of large random graphs. (English) Zbl 1251.05098

Summary: For each \(n \geq 2\), let \(A_{n } = (\xi _{ij})\) be an \(n \times n\) symmetric matrix with diagonal entries equal to zero and the entries in the upper triangular part being independent with mean \(\mu _{n}\) and standard deviation \(\sigma _{n}\). The Laplacian matrix is defined by \(\Delta_n=\) diag\((\sum_{j=1}^n\xi_{ij})_{1\leq i \leq n}-A_n\). In this paper, we obtain the laws of large numbers for \(\lambda _{n-k }(\Delta _{n })\), the \((k + 1)\)-th smallest eigenvalue of \(\Delta _{n}\), through the study of the order statistics of weakly dependent random variables. Under certain moment conditions on \(\xi _{ij}\)’s, we prove that, as \(n \rightarrow \infty\),
(i)
\(\frac{\lambda_{n-k}(\Delta_n)-n\mu_n} {\sigma_n\sqrt{n\log n}} \to -\sqrt{2}\) a.s. for any \(k \geq 1\).
Further, if \({\Delta _{n }; n \geq 2}\) are independent with \(\mu _{n } = 0\) and \(\sigma _{n } = 1\), then,
(ii)
the sequence \({\;\left\{\frac{\lambda_{n-k}(\Delta_n)}{\sqrt{n\log n}};n\geq 2\right\}}\) is dense in \({\left[-\sqrt{2+2(k+1)^{-1}}, -\sqrt{2}\,\right] \text{ a.s.}}\) for any \(k \geq 0\).
In particular, (i) holds for the Erdös-Rényi random graphs. Similar results are also obtained for the largest eigenvalues of \(\Delta _{n }\).

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C35 Extremal problems in graph theory
15B52 Random matrices (algebraic aspects)
05C80 Random graphs (graph-theoretic aspects)
60B10 Convergence of probability measures
Full Text: DOI

References:

[1] Bahatia, R.: Matrix analysis. In: Graduate Texts in Mathematics, vol. 169. Springer, Berlin (1997)
[2] Bai, Z., Methodologies in spectral analysis of large dimensional random matrices: a review, Stat. Sin., 9, 611-677 (1999) · Zbl 0949.60077
[3] Bauer, M.; Golinelli, O., Random incidence matrices: moments of the spectral density, J. Stat. Phys., 103, 301-337 (2001) · Zbl 0999.82035 · doi:10.1023/A:1004879905284
[4] Bollobás, B., Random Graphs (1985), New York: Academic Press, New York · Zbl 0567.05042
[5] Bordenave, C.; Caputo, P.; Chafaï, D., Spectrum of large random reversible Markov chains: two examples, Latin Am. J. Probab. Math. Stat., 7, 41-64 (2010) · Zbl 1276.15016
[6] Bryc, W.; Dembo, A.; Jiang, T., Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab., 34, 1-38 (2006) · Zbl 1094.15009 · doi:10.1214/009117905000000495
[7] Chung, F.: Spectral graph theory. In: CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society (1997) · Zbl 0867.05046
[8] Chung, F., Lu, L.: Complex graphs and networks. In: CBMS Regional Conference Series in Mathematics, vol. 107. American Mathematical Society (2006) · Zbl 1114.90071
[9] Colin de Verdière, Y.: Spectres de Graphes. Societe Mathematique De France (1998) · Zbl 0913.05071
[10] David, H., Nagaraja, H.: Order Statistics, 3rd edn. Wiley-Interscience (2003) · Zbl 1053.62060
[11] Ding, X.; Jiang, T., Spectral distributions of adjacency and Laplacian matrices of weighted random graphs, Ann. Appl. Probab., 20, 6, 2086-2117 (2010) · Zbl 1231.05236 · doi:10.1214/10-AAP677
[12] Durrett, R.: Random Graph Dynamics. Cambridge University Press (2006) · Zbl 1223.05002
[13] Erdös, P.; Rényi, A., On the evolution of random graphs, Magyar Tud. Akad. Mat. Kuató Int. Közl, 5, 17-61 (1960) · Zbl 0103.16301
[14] Erdös, P.; Rényi, A., On random graphs I, Publ. Math. Debrecen., 6, 290-297 (1959) · Zbl 0092.15705
[15] Horn, R., Johnson, C.: Matrix Analysis. Cambridge Univesity Press (1985) · Zbl 0576.15001
[16] Fiedler, M., Algebraic connectivity of graphs (English), Czechoslov. Math. J., 23, 2, 298-305 (1973) · Zbl 0265.05119
[17] Janson, S.; Łuczak, T.; Ruciński, A., Random Graphs (2000), New York: Wiley, New York · Zbl 0968.05003 · doi:10.1002/9781118032718
[18] Khorunzhy, O.; Shcherbina, M.; Vengerovsky, V., Eigenvalue distribution of large weighted random graphs, J. Math. Phys., 45, 4, 1648-1672 (2004) · Zbl 1068.05062 · doi:10.1063/1.1667610
[19] Khorunzhy, A.; Khoruzhenko, B.; Pastur, L.; Shcherbina, M., The Large n-limit in Statistical Mechanics and the Spectral Theory of Disordered Systems, Phase Transition and Critical Phenomenon, vol. 15, 73 (1992), New York: Academic, New York
[20] Kirchhoff, G., Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geföhrt wird, Ann. Phys. Chem., 72, 497-508 (1847)
[21] Kolchin, V., Random Graphs (1998), New York: Cambridge University Press, New York · doi:10.1017/CBO9780511721342
[22] Lin, Z.; Bai, Z., Probability Inequalities (2011), Berlin: Springer, Berlin · Zbl 1221.60001 · doi:10.1007/978-3-642-05261-3
[23] Mohar, B.: In: Alavi, Y., Chartrand, G., Oellermann, O.R., Schwenk, A.J. (eds.) Graph Theory, Combinatorics, and Applications, vol. 2, pp. 871-898. Wiley, New York (1991)
[24] Palmer, E., Graphical Evolution: An Introduction to the Theory of Random Graphs (1985), New York: Wiley, New York · Zbl 0566.05002
[25] Rogers, G.; De Dominicis, C., Density of states of sparse random matrices, J. Phys. A: Math. Gen., 23, 1567-1573 (1990) · Zbl 0703.60106 · doi:10.1088/0305-4470/23/9/019
[26] Rogers, G.; Bray, A., Density of states of a sparse random matrix, Phys. Rev. B., 37, 3557-3562 (1988) · doi:10.1103/PhysRevB.37.3557
[27] Sakhanenko, A.: On the accuracy of normal approximation in the invariance principle [translation of Trudy Inst. Mat. (Novosibirsk) 13 (1989), Asimptot. Analiz Raspred. Sluch. Protsess., 40-66; MR 91d:60082]. Sib. Adv. Math. 1(4), 58-91 (1991) · Zbl 0845.60031
[28] Sakhanenko, A.: Estimates in an invariance principle. In: Limit Theorems of Probability Theory. Trudy Inst. Mat., vol. 5, pp. 27-44, 175. “Nauka” Sibirsk. Otdel, Novosibirsk (1985) · Zbl 0585.60044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.