×

Six-dimensional nilpotent Lie algebras. (English) Zbl 1250.17017

Linear Algebra Appl. 436, No. 1, 163-189 (2012); corrigendum ibid. 604, 507-508 (2020).
In this paper nilpotent six-dimensional Lie algebras are full classified over arbitrary fields. The history of this classification problem is long, beginning in 1891 in [K. A. Umlauf, Über die Zusammensetzung der endlichen continuirlichen Transformationsgruppen, insbesondere der Gruppen vom Range Null. Ph.D. thesis, University of Leipzig, Germany (1891; JFM 24.0333.04)]. Since then, several classifications have appeared, for instance over fields of characteristic zero [V. V. Morozov, Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 4(5), 161–171 (1958; Zbl 0198.05501)], and more recently over algebraically closed fields and over fields of characteristic not 2. This paper completes the classification, giving an unified treatment for all the ground fields. A complete list of the isomorphism classes of these algebras is exhibited, with their multiplication tables enclosed. Concretely, there are \(26+4s\) classes if the field \(\mathbb{F}\) has characteristic not 2, and \(30+2s+4t\) if the characteristic of the field is 2, where \(s\) is the index of \((\mathbb{F}^*)^2\) in \(\mathbb{F}^*\) and \(t\) is the number of equivalence classes in \(\mathbb{F}^*\) of the relation \(\sim\) given by \(\alpha\sim\beta\) when there is \(\gamma\in\mathbb{F}^*\) and \(\delta\in\mathbb{F}\) such that \(\alpha=\gamma^2\beta+\delta^2\). Thus the number of isomorphy classes can be infinite, in contrast with the number of isomorphy classes of nilpotent Lie algebras of dimension up to 5 (one of dimension 2, two of dimension 3, three of dimension 4 and 9 of dimension 5), which is considerably smaller even for algebraically closed fields or perfect fields.
The idea of the used methodology is to obtain the Lie algebras as central extensions of Lie algebras of smaller dimension. Each finite-dimensional nilpotent Lie algebra \(L\) is either \(K\oplus \mathbb{F}\) with \(K\) an ideal, or isomorphic to \(K/Z(K)\) with \(Z(K)\subset[K,K]\). In this latter case \(K\) is called a descendant of \(L\). The isomorphism types of the descendants of \(L\) are in one-to-one correspondence with the \(\text{\text {Aut}}(L)\)-orbits of the second cohomological space \(H^2(L,V)=Z^2(L,V)/B^2(L,V)\). The cocycles \( \vartheta\in Z^2(L,V)\) are the alternating bilinear maps \(\vartheta: L\times L\to V\) such that \(\vartheta([x_1,x_2],x_3)+\vartheta([x_2,x_3],x_1)+\vartheta([x_3,x_1],x_2)=0\) for all \(x_i\in L\), and the coboundaries are the maps \(\eta_\nu: L\times L\to V\) defined as \(\eta_\nu(x,y)=\nu([x,y])\) for \(\nu: L\to V\) a linear map. Now, each \(\vartheta\in Z^2(L,V)\) defines a Lie algebra \(L_\vartheta=L\oplus V\) by \([x+v,y+w]:=[x,y]+\vartheta(x,y)\), which is a central extension of \(L\) isomorphic to \(L_{\vartheta+\eta_\nu}\) (and conversely). The algebra \(L_\vartheta\) is a descendant of \(L\) when \(Z(L)\) does not intersect the radical of \(\vartheta\). For two cocycles \(\vartheta\) and \(\eta\) such that \(L_\vartheta\) and \(L_\eta\) are descendants of \(L\), these algebras are isomorphic if and only if there is \(\phi\in\operatorname{Aut}(L)\) such that \(\langle\phi(\vartheta_1),\dots,\phi(\vartheta_s)\rangle\) is the same subspace of \(H^2(L,V)\) as \(\langle\eta_1,\dots,\eta_s\rangle\), where a basis \(\{e_1,\dots,e_s\}\) of \(V\) has been chosen and the cocycles have been written as \(\vartheta(x,y)=\sum\vartheta_i(x,y)e_i\) and \(\eta(x,y)=\sum\eta_i(x,y)e_i\). For the concrete computations of all such orbits, the authors have used some geometric invariants, such as the Gram determinant or the Arf invariant, more appropriate in the characteristic 2 case.
A byproduct of this work is the determination, for an arbitrary vector space \(V\) of dimension 4, of the \({\text{GL}}(V)\)-orbits on the two-dimensional subspaces of \(V\wedge V\).

MSC:

17B30 Solvable, nilpotent (super)algebras
17B56 Cohomology of Lie (super)algebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
11E04 Quadratic forms over general fields

Software:

Magma; LieAlgDB; GAP; Sophus

References:

[1] Bosma, W.; Cannon, J.; Playoust, C., The magma algebra system I: the user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039
[2] S. Cicalò, W.A. de Graaf, C. Schneider, LieAlgDB<www.sztaki.hu/∼;schneider/Research/LieAlgDB>; S. Cicalò, W.A. de Graaf, C. Schneider, LieAlgDB<www.sztaki.hu/∼;schneider/Research/LieAlgDB>
[3] Cohn, P. M., Basic Algebra: Groups, Rings and Fields (2003), Springer · Zbl 1003.00001
[4] W.A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, 2005. Available from: <http://arxiv.org/abs/math.RA/0511668>; W.A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, 2005. Available from: <http://arxiv.org/abs/math.RA/0511668>
[5] de Graaf, W. A., Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra, 309, 640-653 (2007) · Zbl 1137.17012
[6] Eick, B.; O’Brien, E. A., Enumerating \(p\)-groups, J. Austral. Math. Soc. Ser. A, 67, 2, 191-205 (1999) · Zbl 0979.20021
[7] The GAP Group, GAP<http://www.gap-system.org>; The GAP Group, GAP<http://www.gap-system.org>
[8] M.-P. Gong, Classification of Nilpotent Lie Algebras of Dimension 7, Ph.D. thesis, University of Waterloo, Waterloo, Canada, 1998.; M.-P. Gong, Classification of Nilpotent Lie Algebras of Dimension 7, Ph.D. thesis, University of Waterloo, Waterloo, Canada, 1998.
[9] Lang, S., Algebra, Graduate Texts in Mathematics, vol. 211 (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0984.00001
[10] Morozov, V. V., Classification of nilpotent Lie algebras of sixth order, Izv. Vysš. Učebn. Zaved. Mat., 4, 5, 161-171 (1958) · Zbl 0198.05501
[11] Newman, M. F.; O’Brien, E. A.; Vaughan-Lee, M. R., Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278, 1, 383-401 (2004) · Zbl 1072.20022
[12] O’Brien, E. A., The \(p\)-group generation algorithm, J. Symbolic Comput., 9, 5-6, 677-698 (1990) · Zbl 0736.20001
[13] O’Brien, E. A.; Vaughan-Lee, M. R., The groups with order \(p^7\) for odd prime \(p\), J. Algebra, 292, 1, 243-258 (2005) · Zbl 1108.20016
[14] Schneider, C., A computer-based approach to the classification of nilpotent Lie algebras, Experiment. Math., 14, 2, 153-160 (2005) · Zbl 1093.17004
[15] Skjelbred, T.; Sund, T., Sur la classification des algèbres de Lie nilpotentes, C.R. Acad. Sci. Paris Sér. A-B, 286, 5 (1978) · Zbl 0375.17006
[16] Stroppel, M., The Klein quadric and the classification of nilpotent Lie algebras of class two, J. Lie Theory, 18, 391-411 (2008) · Zbl 1179.17013
[17] K.A. Umlauf, Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null, Ph.D. thesis, University of Leipzig, Germany, 1891.; K.A. Umlauf, Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null, Ph.D. thesis, University of Leipzig, Germany, 1891. · JFM 24.0333.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.