×

Evolving model for the complex traffic and transportation network considering self-growth situation. (English) Zbl 1248.90026

Summary: It has been approved that the scale-free feature exists in various complex networks, such as the Internet, the cell or the biological networks. In order to analyze the influence of the self-growth phenomenon during the growth on the structure of traffic and transportation network, we formulated an evolving model. Based on the evolving model, we prove in mathematics that, even that the self-growth situation happened, the traffic and transportation network owns the scale-free feature due to that the node degree follows a power-law distribution. A real traffic and transportation network, China domestic airline network is tested to consolidate our conclusions. We find that the airline network has a node degree distribution equivalent to the power-law of which the estimated scaling parameter is about 3.0. Moreover the standard error of the estimated scaling parameter changes according to the self-growth probability. Our findings could provide useful information for determining the optimal structure or status of the traffic and transportation network.

MSC:

90B10 Deterministic network models in operations research
90B06 Transportation, logistics and supply chain management
90B20 Traffic problems in operations research
91D30 Social networks; opinion dynamics
68M11 Internet topics

References:

[1] DOI: 10.1126/science.286.5439.509 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[2] DOI: 10.1038/30918 · Zbl 1368.05139 · doi:10.1038/30918
[3] DOI: 10.1038/nrg1272 · doi:10.1038/nrg1272
[4] DOI: 10.1016/j.physrep.2005.10.009 · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[5] DOI: 10.1073/pnas.0400087101 · doi:10.1073/pnas.0400087101
[6] DOI: 10.1073/pnas.0407994102 · Zbl 1135.90309 · doi:10.1073/pnas.0407994102
[7] DOI: 10.2991/ijcis.2011.4.3.2 · doi:10.2991/ijcis.2011.4.3.2
[8] DOI: 10.1209/epl/i2006-10355-6 · doi:10.1209/epl/i2006-10355-6
[9] DOI: 10.1103/PhysRevE.69.036102 · doi:10.1103/PhysRevE.69.036102
[10] DOI: 10.1016/j.physa.2007.10.054 · doi:10.1016/j.physa.2007.10.054
[11] DOI: 10.1137/070710111 · Zbl 1176.62001 · doi:10.1137/070710111
[12] Physical Review Letters 87 (27) (2001)
[13] DOI: 10.1016/j.physrep.2010.11.002 · doi:10.1016/j.physrep.2010.11.002
[14] DOI: 10.1002/asi.21426 · doi:10.1002/asi.21426
[15] (2010)
[16] DOI: 10.1073/pnas.200327197 · doi:10.1073/pnas.200327197
[17] Physics Letters A 373 (46) pp 4246– (2009) · Zbl 1234.05214 · doi:10.1016/j.physleta.2009.09.042
[18] DOI: 10.1016/S0378-4371(02)01774-0 · Zbl 1027.90501 · doi:10.1016/S0378-4371(02)01774-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.