×

Evolutionary Markov chain Monte Carlo algorithms for optimal monitoring network designs. (English) Zbl 1248.60088

Summary: We propose an evolutionary Markov chain Monte Carlo (eMCMC) framework for optimal design of large-scale monitoring networks. From a Bayesian decision theoretical perspective, the optimal design is the design that maximizes the expected utility. In the case of large-scale monitoring networks, the computation of the expected utility involves a very high dimensional integral with respect to future observations and unknown parameters. Based on the work by Müller and coauthors, who have developed a clever simulation-based framework for Bayesian optimal design blending MCMC with simulated annealing, we develop an algorithm that simulates a population of Markov chains, each having its own temperature. The different temperatures allow hotter chains to more easily cross valleys and colder chains to rapidly climb hills. The population evolves according to genetic operators such as mutation and crossover, allowing the chains to explore the decision space both locally and globally by exchanging information among chains. As a result, our framework explores the decision space very effectively. We illustrate the power of the methodology we propose with the optimal redesign of a network of monitoring stations for spatiotemporal ground-level ozone in the eastern USA.

MSC:

60J22 Computational methods in Markov chains
62C10 Bayesian problems; characterization of Bayes procedures
62P12 Applications of statistics to environmental and related topics
65C05 Monte Carlo methods
68T05 Learning and adaptive systems in artificial intelligence
91B06 Decision theory

Software:

Ox
Full Text: DOI

References:

[1] Berger, J., Statistical Decision Theory and Bayesian Analysis (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0572.62008
[2] Bielza, C.; Müller, P.; Rios Insua, D., Decision analysis by augmented probability simulation, Management Science, 45, 995-1007 (1999) · Zbl 1231.91061
[3] Boer, E. P.J.; Dekkers, A. L.M.; Stein, A., Optimization of a monitoring network for sulfur dioxide, Journal of Environmental Quality, 31, 121-128 (2002)
[4] Calder, C. A., Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment, Environmental and Ecological Statistics, 14, 229-247 (2007)
[5] Caselton, W. F.; Kan, L.; Zidek, J. V., Quality data networks that minimizes entropy, (Guttorp, P.; Walden, A., Statistics in the Environmental and Earth Sciences (1992), Halsted Press: Halsted Press New York), 10-38
[6] Cressie, N., Statistics for Spatial Data (1993), John Wiley: John Wiley New York
[7] DeGroot, M., Optimal Statistical Decisions (1970), McGraw Hill: McGraw Hill New York, (Chapter 7) · Zbl 0225.62006
[8] Diggle, P.; Lophaven, S., Bayesian geostatistical design, Scandinavian Journal of Statistics, 33, 53-64 (2006) · Zbl 1120.62112
[9] J.A. Doornik, Object-oriented matrix programming using Ox, 3th edition, London, Timberlake Consultants, and www.nuff.ox.ac.uk/Users/Doornik.Oxprogramming; J.A. Doornik, Object-oriented matrix programming using Ox, 3th edition, London, Timberlake Consultants, and www.nuff.ox.ac.uk/Users/Doornik.Oxprogramming
[10] Drugan, M.; Thierens, D., Evolutionary Markov chain Monte Carlo, (Liardet, P.; Collet, P.; Fonlupt, C.; Luton, E.; Shoenauer, M., Artificial Evolution: 6th International Conference, Evolution Artificielle, EA 2003. Artificial Evolution: 6th International Conference, Evolution Artificielle, EA 2003, Lecture Notes in Computer Science, vol. 2936 (2004), Springer: Springer Berlin), 63-76 · Zbl 1098.68650
[11] Earl, D. J.; Deem, M. W., Parallel tempering: theory, applications, and new perspectives, Physical Chemistry Chemical Physics, 7, 3910-3916 (2005)
[12] Gamerman, D.; Lopes, H. F., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2006), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 1137.62011
[13] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning (1989), Addison-Wesley: Addison-Wesley Reading · Zbl 0721.68056
[14] Goswami, G. R.; Liu, J. S., On learning strategies for evolutionary Monte Carlo, Statistics and Computing, 17, 23-38 (2007)
[15] Guttorp, P.; Le, N. D.; Sampson, P. D.; Zidek, J. V., Using entropy in the redesign of an environmental monitoring network, (Patil, G. P.; Rao, C. R., Multivariate Environmental Statistics (1993), North-Holland Elsevier Science Publishers: North-Holland Elsevier Science Publishers New York), 175-202 · Zbl 0828.62100
[16] Higdon, D. M., Space and space-time modeling using process convolutions, (Anderson, C. W.; Barnett, V.; Chatwin, P. C.; El-Shaarawi, A. H., Quantitative Methods for Current Environmental Issues (2002), Springer-Verlag: Springer-Verlag New York), 37-54 · Zbl 1255.86016
[17] Hu, B.; Tsui, K. W., Distributed Evolutionary Monte Carlo for Bayesian Computing, Computational Statistics and Data Analysis, 54, 688-697 (2010) · Zbl 1464.62091
[18] Jasra, A.; Stephens, D. A.; Holmes, C. C., On population-based simulation for static inference, Statistics and Computing, 17, 263-279 (2007)
[19] N.D. Le, L. Sun, J.V. Zidek, Designing Networks for Monitoring Multivariate Environmental Fields Using Data with Monotone Pattern, Technical Report # 2003-5, Statistical and Applied Mathematical Sciences Institute, NC, 2003.; N.D. Le, L. Sun, J.V. Zidek, Designing Networks for Monitoring Multivariate Environmental Fields Using Data with Monotone Pattern, Technical Report # 2003-5, Statistical and Applied Mathematical Sciences Institute, NC, 2003.
[20] Le, N. D.; Zidek, J. V., Network designs for monitoring multivariate random spatial fields, (Vilaplana, J. P.; Puri, M. L., Advances in Probability and Statistics (1994)), 191-206 · Zbl 0840.62054
[21] Liang, F.; Wong, W. H., Evolutionary Monte Carlo: applications to \(C_p\) model sampling and change point problem, Statistica Sinica, 10, 317-342 (2000) · Zbl 1054.65500
[22] Liang, F.; Wong, W. H., Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models, Journal of the American Statistical Association, 96, 653-666 (2001) · Zbl 1017.62022
[23] Li, Y.; Protopopescu, V. A.; Gorin, A., Accelerated simulated tempering, Physics Letters A, 328, 274-283 (2004) · Zbl 1134.82329
[24] Müller, P., Simulation based optimal design, (Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; Smith, A. F.M., Bayesian Statistics, vol. 6 (1999), Oxford University Press: Oxford University Press Oxford), 459-474 · Zbl 0974.62058
[25] Müller, P.; Sansó, B.; De Iorio, M., Optimal Bayesian design by inhomogeneous Markov chain simulation, Journal of the American Statistical Association, 99, 788-798 (2004) · Zbl 1117.62404
[26] Pardo-Igúzquiza, E., Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing, Journal of Hydrology, 210, 206-220 (1998)
[27] Royle, J. A., Exchange algorithms for constructing large spatial designs, Journal of Statistical Planning and Inference, 100, 121-134 (2002) · Zbl 0985.62059
[28] Ruiz-Cárdenas, R.; Ferreira, M. A.R.; Schmidt, A. M., Stochastic search algorithms for optimal monitoring network designs, Environmetrics, 21, 102-112 (2010)
[29] Sansó, B.; Müller, P., Redesigning a network of rainfall stations, (Gatsonis, C.; Kass, R. E.; Carlin, B.; Carriquiry, A.; Gelman, A.; Verdinelli, I.; West, M., Case Studies in Bayesian Statistics IV (1999), Springer-Verlag: Springer-Verlag New York), 383-394 · Zbl 0927.62119
[30] Strens, M. A.J., Evolutionary MCMC sampling and optimization in discrete spaces, (Fawcett, T.; Mishra, N., Proceedings of the Twentieh International Conference on Machine Learning, ICML-2003 (2003), AAAI Press: AAAI Press Menlo Park), 736-743
[31] Ter Braak, C. J.F., A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces, Statistics and Computing, 16, 239-249 (2006)
[32] Ter Braak, C. J.F.; Vrugt, J. A., Differential Evolution Markov Chain with snooker updater and fewer chains, Statistics and Computing, 18, 435-446 (2008)
[33] Trujillo-Ventura, A.; Ellis, J. H., Multiobjective air pollution monitoring network design, Atmospheric Environment, 25A, 469-479 (1991)
[34] Wu, S.; Zidek, J. V., An entropy-based analysis of data from selected NADP/NTN network sites for 19831986, Atmospheric Environment, 26A, 11, 2089-2103 (1992)
[35] Zidek, J. V.; Sun, W.; Le, N. D., Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields, Applied Statistics, 49, 63-79 (2000) · Zbl 0974.62109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.