×

Phase transition for potentials of high-dimensional wells. (English) Zbl 1248.49059

Summary: For a potential function \(F: \mathbb{R}^k\to \mathbb{R}_+\) that attains its global minimum value at two disjoint compact connected submanifolds \(N^{\pm}\) in \(\mathbb{R}^k\), we discuss the asymptotics, as \(\varepsilon\to 0\), of minimizers \(u_\varepsilon\) of the singular perturbed functional \[ {\mathbf E}_{\varepsilon}(u)= \int_\Omega\Biggl(|\nabla u|^2+{1\over \varepsilon^2} F(u)\Biggr)\,dx \]
under suitable Dirichlet boundary data \(g_\varepsilon: \partial\Omega\to\mathbb{R}^k\). In the expansion of \({\mathbf E}_{\varepsilon} (u_{\varepsilon})\) with respect to \({1\over\varepsilon}\), we identify the first-order term by the area of the sharp interface between the two phases, an area-minimizing hypersurface \(\Gamma\), and the energy \(c^F_0\) of minimal connecting orbits between \(N^+\) and \(N^-\), and the zeroth-order term by the energy of minimizing harmonic maps into \(N^{\pm}\) both under the Dirichlet boundary condition on \(\partial\Omega\) and a very interesting partially constrained boundary condition on the sharp interface \(\Gamma\).

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
Full Text: DOI

References:

[1] Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 pp 439– (1990) · Zbl 0724.49027
[2] Ambrosio, A new proof of the SBV compactness theorem, Calc. Var. Partial Differential Equations 3 pp 127– (1995) · Zbl 0837.49011 · doi:10.1007/BF01190895
[3] André, Recent advances in nonlinear analysis pp 11– (2008) · doi:10.1142/9789812709257_0002
[4] Bethuel, Progress in Nonlinear Differential Equations and Their Applications, 13, in: Ginzburg-Landau vortices (1994) · Zbl 0879.35028 · doi:10.1007/978-1-4612-0287-5
[5] Bronsard, The singular limit of a vector-valued reaction-diffusion process, Trans. Amer. Math. Soc. 350 pp 4931– (1998) · Zbl 0911.35013 · doi:10.1090/S0002-9947-98-02020-0
[6] Evans, Studies in Advanced Mathematics, in: Measure theory and fine properties of functions (1992) · Zbl 0804.28001
[7] Evans, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 pp 1097– (1992) · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[8] Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 pp 767– (1970) · Zbl 0194.35803 · doi:10.1090/S0002-9904-1970-12542-3
[9] Fonseca, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A 111 pp 89– (1989) · Zbl 0676.49005 · doi:10.1017/S030821050002504X
[10] Gurtin, On a theory of phase transitions with interfacial energy, Arch. Rational Mech. Anal. 87 pp 187– (1985) · doi:10.1007/BF00250724
[11] Hardt, Mappings minimizing the Lp-norm of the gradient, Comm. Pure Appl. Math. 40 pp 555– (1987) · Zbl 0646.49007 · doi:10.1002/cpa.3160400503
[12] Hardt, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (3) pp 3– (1979) · Zbl 0457.49029 · doi:10.2307/1971233
[13] Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 pp 417– (1993) · Zbl 0784.53035 · doi:10.4310/jdg/1214454300
[14] Kohn, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 pp 69– (1989) · Zbl 0676.49011 · doi:10.1017/S0308210500025026
[15] Lin , F. H. Pan , X. B. Wang , C. Y. Boundary regularity for a new class of minimizing harmonic maps
[16] Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 pp 349– (1988) · Zbl 0641.58012 · doi:10.1512/iumj.1988.37.37017
[17] Luckhaus, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal. 107 pp 71– (1989) · Zbl 0681.49012 · doi:10.1007/BF00251427
[18] Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal. 98 pp 123– (1987) · Zbl 0616.76004 · doi:10.1007/BF00251230
[19] Modica, Il limite nella {\(\Gamma\)}-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A (5) 14 pp 526– (1977)
[20] Owen, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition, Proc. Roy. Soc. London Ser. A 429 pp 505– (1990) · Zbl 0722.49021 · doi:10.1098/rspa.1990.0071
[21] Rubinstein, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math. 49 pp 116– (1989) · Zbl 0701.35012 · doi:10.1137/0149007
[22] Rubinstein, Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math. 49 pp 1722– (1989) · Zbl 0702.35128 · doi:10.1137/0149104
[23] Schoen, A regularity theory for harmonic maps, J. Differential Geom. 17 pp 307– (1982) · Zbl 0521.58021 · doi:10.4310/jdg/1214436923
[24] Simon, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, in: Lectures on geometric measure theory (1983)
[25] Simon, Cylindrical tangent cones and the singular set of minimal submanifolds, J. Differential Geom. 38 pp 585– (1993) · Zbl 0819.53029 · doi:10.4310/jdg/1214454484
[26] Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal. 101 pp 209– (1988) · Zbl 0647.49021 · doi:10.1007/BF00253122
[27] Sternberg, Vector-valued local minimizers of nonconvex variational problems. Current directions in nonlinear partial differential equations (Provo, UT, 1987), Rocky Mountain J. Math. 21 pp 799– (1991) · doi:10.1216/rmjm/1181072968
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.