×

Zeros of non-Baxter paraorthogonal polynomials on the unit circle. (English) Zbl 1248.42024

This paper provides leading-order asymptotics for the size of the gap in the zeros around \(1\) of paraorthogonal polynomials on the unit circle whose Verblunsky coefficients satisfy a slow decay condition and are inside the interval \((0,1)\). Precisely it proves the following
Theorem. Let \(k\in \mathbb{N},\bar{\epsilon}>0\), and \(\xi\in (\frac \pi 2 +\bar{\epsilon}, \frac {3\pi} 2-\bar{\epsilon})\) be fixed, and let \(\beta=e^{i\xi}\). Let \(\{\alpha_n \}_{n\geq 0}\) be a sequence of real Verblunsky coefficients having slow decay controlled by \(f\). For each \(\delta>0\), there exists \(N_k=N_k(\delta)\in \mathbb{N}\) so that if \(M>N_k\), then the zero point \(\xi_k^{(M)}\) of the paraorthogonal polynomial \(\Phi_k^{\beta_k}(z)\) obeys \[ |\frac {\arg (\xi_k^{(M))})} {2|f(M)|} -1|<\delta, \] and \[ |\frac {2\pi-\arg (\xi_{M-k+1}^{(M))})} {2|f(M)|} -1|<\delta. \] This theorem proves a conjecture in the paper [Electron. Trans. Numer. Anal. 25 328-368 (2006; Zbl 1129.42011)] by B. Simon.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
26C10 Real polynomials: location of zeros
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations

Citations:

Zbl 1129.42011

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972) · Zbl 0543.33001
[2] Bandtlow, O.: Estimates for norms of resolvents and an application to the perturbation of spectra. Math. Nachr. 267, 3–11 (2004) · Zbl 1056.47004 · doi:10.1002/mana.200310149
[3] Davies, E.B., Simon, B.: Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle. J. Approx. Theory 141, 189–213 (2006) · Zbl 1127.47037 · doi:10.1016/j.jat.2006.03.006
[4] Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory with Applications to Schrodinger Operators. Applied Mathematical Sciences. Springer, New York (1996) · Zbl 0855.47002
[5] Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: From Poisson to Clock via random matrix ensembles. Duke Math. J. 146(3), 361–399 (2009) · Zbl 1155.81020 · doi:10.1215/00127094-2009-001
[6] Last, Y., Simon, B.: Fine structure of the zeros of orthogonal polynomials, IV. A priori bounds and clock behavior. Comm. Pure Appl. Math. 61, 486–538 (2008) · Zbl 1214.42044 · doi:10.1002/cpa.20185
[7] Nevai, P.: Orthogonal polynomials, measures and recurrences on the unit circle. Trans. Amer. Math. Soc. 300, 175–189 (1987) · Zbl 0658.42026 · doi:10.1090/S0002-9947-1987-0871671-9
[8] Saff, E.B., Stylianopoulos, N.S.: Asymptotics for polynomial zeros: beware of predictions from plots. Comput. Methods Funct. Theory 8, 385–407 (2008) · Zbl 1163.30010 · doi:10.1007/BF03321695
[9] Simon, B.: Orthogonal Polynomials on the Unit Circle, Part One: Classical Theory. Am. Math. Soc., Providence (2005) · Zbl 1082.42020
[10] Simon, B.: Orthogonal Polynomials on the Unit Circle, Part Two: Spectral Theory. Am. Math. Soc., Providence (2005) · Zbl 1082.42021
[11] Simon, B.: Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures. Electron. Trans. Numer. Anal. 25, 328–368 (2006) · Zbl 1129.42011
[12] Simon, B.: Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle. J. Math. Anal. Appl. 329, 376–382 (2007) · Zbl 1110.33004 · doi:10.1016/j.jmaa.2006.06.076
[13] Stoiciu, M.: The statistical distribution of the zeroes of random paraorthogonal polynomials on the unit circle. J. Approx. Theory 139, 29–64 (2006) · Zbl 1088.42017 · doi:10.1016/j.jat.2005.04.001
[14] Wong, M.-W.L.: First and second kind paraorthogonal polynomials and their zeros. J. Approx. Theory 146, 282–293 (2007) · Zbl 1116.33012 · doi:10.1016/j.jat.2006.12.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.