×

Existence and asymptotic behaviour of solutions for a viscous \(p(x)\)-Laplacian equation. (English) Zbl 1248.35112

Summary: In this article we investigate the existence of weak solutions by constructing a sequence of weak solutions with the use of difference and variation techniques and passing a limit process with some necessary a priori estimates. Also, two types of asymptotic behaviours of the weak solutions are studied. We prove that the solution approaches zero in \(H^1_0(\Omega)\)-norm as \(t \to \infty\) and under some additional conditions, the solution approaches its initial data in \(L^2(0,T;H^1_0(\Omega ))\)-norm as \(p^- \to \infty\) where \(p^- =\mathrm{inf}_\Omega p(x)\).

MSC:

35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
35D30 Weak solutions to PDEs
35B45 A priori estimates in context of PDEs
Full Text: DOI

References:

[1] DOI: 10.1512/iumj.1981.30.30062 · Zbl 0495.35047 · doi:10.1512/iumj.1981.30.30062
[2] DOI: 10.1016/0021-8928(60)90107-6 · Zbl 0104.21702 · doi:10.1016/0021-8928(60)90107-6
[3] Liu CC, Electronic J. Differ. Eqns 63 pp 1– (2003)
[4] DOI: 10.1137/0512062 · Zbl 0477.47037 · doi:10.1137/0512062
[5] DOI: 10.1070/RM1987v042n02ABEH001309 · Zbl 0642.35047 · doi:10.1070/RM1987v042n02ABEH001309
[6] DOI: 10.1016/0022-247X(74)90116-4 · Zbl 0272.35039 · doi:10.1016/0022-247X(74)90116-4
[7] DOI: 10.1016/S1874-5733(06)80005-7 · doi:10.1016/S1874-5733(06)80005-7
[8] Ruzicka M, Lecture Notes in Mathematics 1748 (2000)
[9] DOI: 10.1137/050624522 · Zbl 1102.49010 · doi:10.1137/050624522
[10] Antontsev, SN and Shmarev, SI. 2007.Anisotropic parabolic equations with variable nonlinearity, preprint (2007-013), 1–34. Portugal: CMAF, University of Lisbon.
[11] DOI: 10.1016/j.cam.2010.01.026 · Zbl 1196.35057 · doi:10.1016/j.cam.2010.01.026
[12] DOI: 10.1007/978-3-7643-7719-9_4 · doi:10.1007/978-3-7643-7719-9_4
[13] Antontsev SN, Adv. Differ. Eqns 10 pp 1053– (2005)
[14] DOI: 10.1016/j.na.2008.11.025 · Zbl 1238.35052 · doi:10.1016/j.na.2008.11.025
[15] DOI: 10.1016/j.camwa.2008.01.017 · Zbl 1155.35389 · doi:10.1016/j.camwa.2008.01.017
[16] DOI: 10.1090/S0025-5718-09-02231-5 · Zbl 1201.35146 · doi:10.1090/S0025-5718-09-02231-5
[17] DOI: 10.1007/s002200100591 · Zbl 0990.35054 · doi:10.1007/s002200100591
[18] DOI: 10.1016/j.jmaa.2008.07.022 · Zbl 1176.35095 · doi:10.1016/j.jmaa.2008.07.022
[19] DOI: 10.1016/S0362-546X(02)00150-5 · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[20] DOI: 10.1090/S0002-9939-07-08815-6 · Zbl 1146.35067 · doi:10.1090/S0002-9939-07-08815-6
[21] Simon J, Ann. Mat. Pura. Appl. 4 (146) pp 65– (1987)
[22] DOI: 10.1007/978-1-4612-0895-2 · doi:10.1007/978-1-4612-0895-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.