×

Fine gradings on exceptional simple Lie superalgebras. (English) Zbl 1248.17008

The authors completely determine the fine gradings on the exceptional simple Lie superalgebras over an algebraically closed field of characteristic \(0\), in Kac’s classification in 1977. As it is well known, a grading (in fact, an abelian group grading) on a Lie algebra is said to be fine if it admits no proper refinements (it implies that any grading is obtained as a coarsening of some fine gradings) and the type of a grading on finite-dimensional Lie algebra \(\mathcal{A}\) is the sequence of numbers \((n_1, n_2, \dots, n_r)\) where \(n_r\) is the number of homogeneous components of dimension \(i\), \( i = 1, \dots, r\), with \(n_r \neq 0\). Thus, \(\dim \mathcal{A} = \sum_{i = 1}^r i \, n_i\). The definitions on gradings on algebras carry over in a straightforward way to superalgebras.
In this way, the authors deal in the paper with the gradings in simple Lie superalgebras \(F(4)\) and \(G(3)\) and with those with corresponding maximal abelian diagonalizable subgroups fixing the three simple ideals of \(D(2,1,\alpha)\), \(\alpha \neq 0, -1\). They obtain that, up to equivalence, there are five gradings on \(F(4)\), only two on \(G(3)\) and five, six and four, respectively, on \(D(2,1,\alpha)\), depending on the values of \(\alpha\).

MSC:

17B25 Exceptional (super)algebras
17B50 Modular Lie (super)algebras

References:

[1] DOI: 10.1080/00927870802278529 · Zbl 1190.17005 · doi:10.1080/00927870802278529
[2] DOI: 10.1090/S0002-9939-02-06466-3 · Zbl 1083.17014 · doi:10.1090/S0002-9939-02-06466-3
[3] Martín A. J. Calderón, J. Algebra 234 pp 3249–
[4] DOI: 10.1016/j.laa.2006.01.017 · Zbl 1146.17027 · doi:10.1016/j.laa.2006.01.017
[5] Draper C., Rev. Mat. Iberoamericana. 25 pp 841–
[6] DOI: 10.1006/jabr.1998.7474 · Zbl 0915.17022 · doi:10.1006/jabr.1998.7474
[7] DOI: 10.1007/s00014-003-0790-9 · Zbl 1041.17012 · doi:10.1007/s00014-003-0790-9
[8] DOI: 10.2140/pjm.2007.231.337 · Zbl 1207.17023 · doi:10.2140/pjm.2007.231.337
[9] DOI: 10.1016/j.jalgebra.2010.09.018 · Zbl 1213.17030 · doi:10.1016/j.jalgebra.2010.09.018
[10] DOI: 10.1016/0001-8708(77)90017-2 · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[11] DOI: 10.1080/00927877708822224 · Zbl 0367.17007 · doi:10.1080/00927877708822224
[12] DOI: 10.1016/0024-3795(89)90591-0 · Zbl 0675.17001 · doi:10.1016/0024-3795(89)90591-0
[13] Scheunert M., Lecture Notes in Mathematics 716, in: The Theory of Lie Superalgebras. An Introduction (1979) · Zbl 0407.17001 · doi:10.1007/BFb0070929
[14] DOI: 10.1070/IM1985v024n03ABEH001250 · Zbl 0565.17001 · doi:10.1070/IM1985v024n03ABEH001250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.