×

On defect induced gauge and Yukawa fields in graphene. (English) Zbl 1247.82126

Summary: We consider lattice deformations (both continuous and topological) of the hexagonal lattice model describing the electronic wave function of graphene in the tight binding approximation. The deformation involves operators with the range up to next-to-neighbor. In the low energy limit, we find that these deformations give rise to couplings of the electronic Dirac field to an external scalar (Yukawa) and gauge fields. The fields are expressed in terms of original defects. As a by-product we establish that the next-to-nearest order is the minimal range of deformations which produces the complete gauge and scalar fields. We consider an example of Stone-Wales defect, and find the associated gauge field.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices

References:

[1] DOI: 10.1103/RevModPhys.81.109 · doi:10.1103/RevModPhys.81.109
[2] DOI: 10.1103/PhysRev.71.622 · Zbl 0033.14304 · doi:10.1103/PhysRev.71.622
[3] DOI: 10.1103/PhysRevLett.53.2449 · doi:10.1103/PhysRevLett.53.2449
[4] DOI: 10.1142/0356 · doi:10.1142/0356
[5] DOI: 10.1038/nmat1846 · doi:10.1038/nmat1846
[6] DOI: 10.1038/nmat1851 · doi:10.1038/nmat1851
[7] DOI: 10.1143/JPSJ.75.124701 · doi:10.1143/JPSJ.75.124701
[8] DOI: 10.1103/PhysRevB.75.045404 · doi:10.1103/PhysRevB.75.045404
[9] DOI: 10.1016/j.ssc.2007.02.043 · doi:10.1016/j.ssc.2007.02.043
[10] DOI: 10.1103/PhysRevB.65.235412 · doi:10.1103/PhysRevB.65.235412
[11] DOI: 10.1143/PTP.113.463 · doi:10.1143/PTP.113.463
[12] DOI: 10.1016/j.physrep.2010.07.003 · doi:10.1016/j.physrep.2010.07.003
[13] DOI: 10.1142/9781860943799 · doi:10.1142/9781860943799
[14] DOI: 10.1103/PhysRevLett.78.1932 · doi:10.1103/PhysRevLett.78.1932
[15] DOI: 10.1103/PhysRevLett.69.172 · doi:10.1103/PhysRevLett.69.172
[16] DOI: 10.1016/0550-3213(93)90009-E · Zbl 0992.82512 · doi:10.1016/0550-3213(93)90009-E
[17] DOI: 10.1103/PhysRevLett.85.5190 · doi:10.1103/PhysRevLett.85.5190
[18] DOI: 10.1134/1.1387528 · doi:10.1134/1.1387528
[19] DOI: 10.1016/j.physleta.2008.06.029 · Zbl 1223.82085 · doi:10.1016/j.physleta.2008.06.029
[20] DOI: 10.1016/0009-2614(86)80661-3 · doi:10.1016/0009-2614(86)80661-3
[21] DOI: 10.1103/PhysRevB.57.R4277 · doi:10.1103/PhysRevB.57.R4277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.