×

\(\kappa \)-Minkowski spacetime through exotic “oscillator”. (English) Zbl 1247.81225

Summary: We have proposed a generally covariant non-relativistic particle model that can represent the \(\kappa \)-Minkowski noncommutative spacetime. The idea is similar in spirit to the noncommutative particle coordinates in the lowest Landau level. Physically our model yields a novel type of dynamical system (termed here as exotic “oscillator”), that obeys a harmonic oscillator like equation of motion with a frequency that is proportional to the square root of energy. On the other hand, the phase diagram does not reveal a closed structure since there is a singularity in the momentum even though energy remains finite. The generally covariant form is related to a generalization of the Snyder algebra in a specific gauge and yields the \(\kappa \)-Minkowski spacetime after a redefinition of the variables. Symmetry considerations are also briefly discussed in the Hamiltonian formulation. Regarding continuous symmetry, the angular momentum acts properly as the generator of rotation. Interestingly, both the discrete symmetries, parity and time reversal, remain intact in the \(\kappa \)-Minkowski spacetime.

MSC:

81R60 Noncommutative geometry in quantum theory

References:

[1] Szabo, R., Int. J. Mod. Phys. A, 19, 1837 (2004), For a review, see
[2] Szabo, R. J.
[3] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., Phys. Lett. B, 331, 39 (1994)
[4] Amelino-Camelia, G.
[5] Kosiński, P.; Lukierski, J.; Maślanka, P., Phys. Rev. D, 62, 025004 (2000)
[6] Agostini, A.; Amelino-Camelia, G.; D’Andrea, F., Int. J. Mod. Phys. A, 19, 5187 (2004) · Zbl 1078.81036
[7] Dimitrijevic, M.; Jonke, L.; Moeller, L.; Tsouchnika, E.; Wess, J.; Wohlgenannt, M., Eur. Phys. J. C, 31, 129 (2003) · Zbl 1032.81529
[8] Amelino-Camelia, G., Nature, 418, 34 (2002)
[9] Kowalski-Glikman, J.; Nowak, S., Int. J. Mod. Phys. D, 12, 299 (2003) · Zbl 1079.83535
[10] Snyder, H. S., Phys. Rev., 71, 38 (1947) · Zbl 0035.13101
[11] Bars, I.
[12] Romero, J. M.; Zamora, A., Phys. Rev. D, 70, 105006 (2004)
[13] Ghosh, S., Phys. Lett. B, 571, 97 (2003) · Zbl 1094.81555
[14] Hanson, A. J.; Regge, T.; Teitelboim, C., Constrained Hamiltonian System (1976), Accademia Nazionale Dei Lincei: Accademia Nazionale Dei Lincei Roma, See also
[15] Dirac, P. A.M., Lectures on Quantum Mechanics (1964), Yeshiva Univ. Press: Yeshiva Univ. Press New York · Zbl 0141.44603
[16] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems (1991), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ, For a lucid discussion see · Zbl 0638.58041
[17] Banerjee, R.; Chakraborty, B.; Gangopadhyay, S., J. Phys. A: Math. Gen., 38, 95 (2005)
[18] S. Ghosh, P. Pal, in preparation; S. Ghosh, P. Pal, in preparation
[19] Ghosh, S., Mod. Phys. Lett. A, 19, 2505 (2004) · Zbl 1064.81094
[20] Agostini, A.; Amelino-Camelia, G.; Arzano, M., Class. Quantum Grav., 21, 2179 (2004) · Zbl 1051.83003
[21] Balachandran, A. P.; Pinzul, A.
[22] S. Ghosh, in preparation; S. Ghosh, in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.