×

A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise. (English) Zbl 1247.65006

Summary: The paper deals with the numerical treatment of stochastic differential-algebraic equations of index one with a scalar driving Wiener process. Therefore, a particularly customized stochastic Runge-Kutta method is introduced. Order conditions for convergence with order 1.0 in the mean-square sense are calculated and coefficients for some schemes are presented. The proposed schemes are stiffly accurate and applicable to nonlinear stochastic differential-algebraic equations. As an advantage they do not require the calculation of any pseudo-inverses or projectors. Further, the mean-square stability of the proposed schemes is analyzed and simulation results are presented bringing out their good performance.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
34A09 Implicit ordinary differential equations, differential-algebraic equations
65L80 Numerical methods for differential-algebraic equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

Software:

RODAS
Full Text: DOI

References:

[1] Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977) · Zbl 0374.65038 · doi:10.1137/0714068
[2] Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996). Revised and corrected reprint of the 1989 original · Zbl 0699.65057
[3] Burrage, K., Tian, T.: Implicit stochastic Runge-Kutta methods for stochastic differential equations. BIT Numer. Math. 44(1), 21–39 (2004). doi: 10.1023/B:BITN.0000025089.50729.0f · Zbl 1048.65005 · doi:10.1023/B:BITN.0000025089.50729.0f
[4] Debrabant, K., Kværnø, A.: B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute their internal stage values. SIAM J. Numer. Anal. 47(1), 181–203 (2008/09). doi: 10.1137/070704307 · Zbl 1188.65006 · doi:10.1137/070704307
[5] Debrabant, K., Rößler, A.: Diagonally drift-implicit Runge-Kutta methods of weak order one and two for Itô SDEs and stability analysis. Appl. Numer. Math. 59(3–4), 595–607 (2009). doi: 10.1016/j.apnum.2008.03.011 · Zbl 1166.65304 · doi:10.1016/j.apnum.2008.03.011
[6] Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989) · Zbl 0683.65050
[7] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2002). Stiff and differential-algebraic problems · Zbl 0859.65067
[8] Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (electronic) (2000). doi: 10.1137/S003614299834736X . · Zbl 0982.60051 · doi:10.1137/S003614299834736X
[9] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991) · Zbl 0734.60060
[10] Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics (New York), vol. 23. Springer, Berlin (1992) · Zbl 0752.60043
[11] Küpper, D.: Runge-Kutta methods for stochastic differential-algebraic equations. Ph.D. thesis, TU Darmstadt, Fachbereich Mathematik, Verlag Dr. Hut, München (2009) · Zbl 1183.65006
[12] Römisch, W., Winkler, R.: Stochastic DAEs in circuit simulation. In: Modeling, Simulation, and Optimization of Integrated Circuits (Oberwolfach, 2001). Internat. Ser. Numer. Math., vol. 146, pp. 303–318. Birkhäuser, Basel (2003) · Zbl 1045.65008
[13] Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010). doi: 10.1137/09076636X · Zbl 1231.65015 · doi:10.1137/09076636X
[14] Rößler, A.: Stochastic Taylor expansions for functionals of diffusion processes. Stoch. Anal. Appl. 28(3), 415–429 (2010). doi: 10.1080/07362991003707905 · Zbl 1208.60069 · doi:10.1080/07362991003707905
[15] Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33(6), 2254–2267 (1996). doi: 10.1137/S0036142992228409 · Zbl 0869.60052 · doi:10.1137/S0036142992228409
[16] Schein, O.: Stochastic differential-algebraic equations in circuit simulation. Ph.D. thesis, TU Darmstadt, Fachbereich Mathematik, Shaker Verlag, Aachen (1999) · Zbl 0952.60067
[17] Schein, O., Denk, G.: Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits. J. Comput. Appl. Math. 100(1), 77–92 (1998). doi: 10.1016/S0377-0427(98)00138-1 · Zbl 0928.65014 · doi:10.1016/S0377-0427(98)00138-1
[18] Sickenberger, T., Weinmüller, E., Winkler, R.: Local error estimates for moderately smooth problems. II. SDEs and SDAEs with small noise. BIT Numer. Math. 49(1), 217–245 (2009). doi: 10.1007/s10543-009-0209-0 · Zbl 1170.65005 · doi:10.1007/s10543-009-0209-0
[19] Winkler, R.: Stochastic differential algebraic equations of index 1 and applications in circuit simulation. J. Comput. Appl. Math. 157(2), 477–505 (2003). doi: 10.1016/S0377-0427(03)00436-9 · Zbl 1043.65010 · doi:10.1016/S0377-0427(03)00436-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.