×

The density Turán problem. (English) Zbl 1247.05113

Summary: Let \(H\) be a graph on \(n\) vertices and let the blow-up graph \(G[H]\) be defined as follows. We replace each vertex \(v_{i}\) of \(H\) by a cluster \(A_{i}\) and connect some pairs of vertices of \(A_{i}\) and \(A_{j}\) if \((v_{i},v_{j})\) is an edge of the graph \(H\). As usual, we define the edge density between \(A_{i}\) and \(A_{j}\) as
\[ d(A_{i},A_{j})=\frac{e(A_{i},A_{j})}{|A_{i}||A_{j}|}. \]
We study the following problem. Given densities \(\gamma _{ij}\) for each edge \((i,j) \in E(H)\), one has to decide whether there exists a blow-up graph \(G[H]\), with edge densities at least \(\gamma _{ij}\), such that one cannot choose a vertex from each cluster, so that the obtained graph is isomorphic to \(H\), i.e., no \(H\) appears as a transversal in \(G[H]\). We call \(d_{\text{crit}}(H)\) the maximal value for which there exists a blow-up graph \(G[H]\) with edge densities \(d(A_{i},A_{j})=d_{\text{crit}}(H) ((v_{i},v_{j}) \in E(H))\) not containing \(H\) in the above sense. Our main goal is to determine the critical edge density and to characterize the extremal graphs.
First, in the case of tree \(T\) we give an efficient algorithm to decide whether a given set of edge densities ensures the existence of a transversal \(T\) in the blow-up graph. Then we give general bounds on \(d_{\text{crit}}(H)\) in terms of the maximal degree. In connection with the extremal structure, the so-called star decomposition is proved to give the best construction for H-transversal-free blow-up graphs for several graph classes. Our approach applies algebraic graph-theoretical, combinatorial and probabilistic tools.

MSC:

05C35 Extremal problems in graph theory
05C42 Density (toughness, etc.)
05C31 Graph polynomials
05C85 Graph algorithms (graph-theoretic aspects)

References:

[1] Füredi, Surveys in Combinatorics pp 253– (1991)
[2] DOI: 10.1007/978-1-4613-0163-9 · doi:10.1007/978-1-4613-0163-9
[3] DOI: 10.1007/s00493-006-0009-y · Zbl 1174.05406 · doi:10.1007/s00493-006-0009-y
[4] DOI: 10.1016/0012-365X(75)90011-4 · Zbl 0306.05121 · doi:10.1016/0012-365X(75)90011-4
[5] DOI: 10.1016/S0012-365X(96)00300-7 · Zbl 0891.05041 · doi:10.1016/S0012-365X(96)00300-7
[6] Bollobás, Utilitas Math. 6 pp 343– (1974)
[7] Turán, Mat. Fiz. Lapok 48 pp 436– (1941)
[8] Bollobás, Extremal Graph Theory (1978)
[9] DOI: 10.1112/S1461157009000436 · Zbl 1227.05176 · doi:10.1112/S1461157009000436
[10] DOI: 10.1002/0471722154 · doi:10.1002/0471722154
[11] DOI: 10.1007/s10955-004-2055-4 · Zbl 1107.82013 · doi:10.1007/s10955-004-2055-4
[12] Nagy, Electron. J. Combin. 18 pp #46– (2011)
[13] DOI: 10.1007/BF01877590 · Zbl 0228.05131 · doi:10.1007/BF01877590
[14] DOI: 10.1017/S0963548300000274 · Zbl 0793.05088 · doi:10.1017/S0963548300000274
[15] DOI: 10.1007/s10801-010-0218-8 · Zbl 1221.05045 · doi:10.1007/s10801-010-0218-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.