×

A characterization of retracts in certain Fraïssé limits. (English) Zbl 1247.03046

Summary: Assuming certain conditions on a class \(\mathcal C\) of finitely generated first-order structures admitting the model-theoretical construction of a Fraïssé limit, we characterize retracts of such limits as algebraically closed structures in a class naturally related to \(\mathcal C\). In this way we generalize an earlier description of retracts of the countably infinite random graph.

MSC:

03C15 Model theory of denumerable and separable structures
03C50 Models with special properties (saturated, rigid, etc.)
08A35 Automorphisms and endomorphisms of algebraic structures
Full Text: DOI

References:

[1] Bonato, On retracts of the random graph and their natural order, Monatsh. Math. 135 pp 1– (2002) · Zbl 0998.20055 · doi:10.1007/s006050200000
[2] Bonato, The monoid of the random graph, Semigroup Forum 61 pp 138– (2000) · Zbl 0957.20045 · doi:10.1007/PL00006009
[3] Cameron, Algorithms and Combinatorics Vol. 14 pp 333– (1997)
[4] Cameron, European Congress of Mathematics Vol. I. Proceedings of the 3rd Congress (3ecm) held in Barcelona, July 10-14, 2000 pp 267– (2001)
[5] Cameron, Homomorphism-homogeneous relational structures, Comb. Probab. Comput. 15 pp 91– (2006) · Zbl 1091.08001 · doi:10.1017/S0963548305007091
[6] Delić, The endomorphism monoid of the random graph has uncountably many ideals, Semigroup Forum 69 pp 75– (2004) · Zbl 1058.20053 · doi:10.1007/s00233-004-0118-0
[7] Dolinka, The Bergman property for endomorphism monoids of some Fraïssé limits, Submitted for publication · Zbl 1307.20056
[8] Dolinka, A universality result for endomorphism monoids of some ultrahomogeneous structures, Submitted for publication · Zbl 1273.03115
[9] Droste, On homogeneous semilattices and their automorphism groups, Order 16 pp 31– (1999) · Zbl 0945.06001 · doi:10.1023/A:1006365012997
[10] Droste, The automorphism group of the universal distributive lattice, Algebra Univers. 43 pp 295– (2000) · Zbl 1013.06009 · doi:10.1007/s000120050160
[11] Fraïssé, Sur certains relations qui généralisent l’ordre des nombres rationnels, C. R. Acad. Sci., Paris 237 pp 540– (1953)
[12] Fraïssé, Sur l’extension aux relations de quelques propriétés des ordres, Ann. Sci. Éc. Norm. Supér 71 pp 363– (1954) · Zbl 0057.04206 · doi:10.24033/asens.1027
[13] Hell, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and Its Applications Vol. 28 (2004)
[14] Henson, A family of countable homogeneous graphs, Pac. J. Math. 38 pp 69– (1971) · Zbl 0204.24103 · doi:10.2140/pjm.1971.38.69
[15] Hodges, Building Models by Games, London Mathematical Society Student Texts Vol. 2 (1985) · Zbl 0569.03015
[16] Hodges, A Shorter Model Theory (1997)
[17] Hubička, Finite presentation of homogeneous graphs, posets and Ramsey classes, Isr. J. Math. 149 pp 21– (2005) · Zbl 1091.05070 · doi:10.1007/BF02772535
[18] Lachlan, Countable ultrahomogeneous undirected graphs, Trans. Am. Math. Soc. 262 pp 51– (1980) · Zbl 0471.03025 · doi:10.1090/S0002-9947-1980-0583847-2
[19] Macintyre, On algebraically closed groups, Ann. Math. (2) 96 pp 53– (1972) · Zbl 0254.20021 · doi:10.2307/1970894
[20] Macpherson, A survey of homogeneous structures, Discrete Math. 311 pp 1599– (2011) · Zbl 1238.03032 · doi:10.1016/j.disc.2011.01.024
[21] Mudrinski, Notes on endomorphisms of Henson graphs and their complements, Ars Comb. 96 pp 173– (2010) · Zbl 1249.05185
[22] Ouwehand, Algebraically closed algebras in certain small congruence distributive varieties, Algebra Univers. 61 pp 247– (2009) · Zbl 1198.08001 · doi:10.1007/s00012-009-0015-1
[23] Schmerl, Countable homogeneous partially ordered sets, Algebra Univers. 9 pp 317– (1979) · Zbl 0423.06002 · doi:10.1007/BF02488043
[24] Schmid, Algebraically and existentially closed distributive lattices, Z. Math. Log. Grundl. Math. 25 pp 525– (1979) · Zbl 0425.06007 · doi:10.1002/malq.19790253304
[25] Weispfenning, Existentially closed semilattices, Algebra Univers. 21 pp 146– (1985) · Zbl 0604.06004 · doi:10.1007/BF01188050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.