×

\(K\)-theory of quiver varieties, \(q\)-Fock space and nonsymmetric Macdonald polynomials. (English) Zbl 1246.17020

There are two constructions of the level-\((0,1)\) irreducible representation of the quantum toroidal algebra of type \(A\). In the first (due to Nakajima and Varagnolo-Vasserot) the representation is constructed on the direct sum of the equivariant \(K\)-groups of the quiver varieties of type \(\widehat{A}\). In the second (due to Saito-Takemura-Uglov and Varagnolo-Vasserot) the representation is constructed on the \(q\)-deformed Fock space introduced by Kashiwara-Miwa-Stern.
In the paper an explicit isomorphism between these two constructions is given. To describe this isomorphism the author construct simultaneous eigenvectors on the \(q\)-Fock space using the nonsymmetric Macdonald polynomials. The isomorphism is given by attaching these vectors to the torus fixed points on the quiver varieties.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
33C52 Orthogonal polynomials and functions associated with root systems
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
16G20 Representations of quivers and partially ordered sets

References:

[1] J. Beck: Braid group action and quantum affine algebras , Comm. Math. Phys. 165 (1994), 555–568. · Zbl 0807.17013 · doi:10.1007/BF02099423
[2] V. Chari and A. Pressley: Quantum affine algebras and affine Hecke algebras , Pacific J. Math. 174 (1996), 295–326. · Zbl 0881.17011
[3] I. Cherednik: A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , Invent. Math. 106 (1991), 411–431. · Zbl 0725.20012 · doi:10.1007/BF01243918
[4] I. Cherednik: Double affine Hecke algebras and Macdonald’s conjectures , Ann. of Math. (2) 141 (1995), 191–216. JSTOR: · Zbl 0822.33008 · doi:10.2307/2118632
[5] I. Cherednik: Nonsymmetric Macdonald polynomials , Internat. Math. Res. Notices (1995), 483–515. · Zbl 0886.05121 · doi:10.1155/S1073792895000341
[6] I. Gordon: Quiver varieties, category \(\mathcal{O}\) for rational Cherednik algebras, and Hecke algebras , math.RT/0703150. · Zbl 1168.16015
[7] M. Haiman: Combinatorics, symmetric functions, and Hilbert schemes ; in Current Developments in Mathematics, 2002, Int. Press, Somerville, MA, 2003, 39–111. · Zbl 1053.05118
[8] D. Hernandez: Quantum toroidal algebras and their representations , · Zbl 1222.17017 · doi:10.1007/s00029-009-0502-4
[9] D. Hernandez: Representations of quantum affinizations and fusion product , Transform. Groups 10 (2005), 163–200. · Zbl 1102.17009 · doi:10.1007/s00031-005-1005-9
[10] D. Hernandez: Drinfeld coproduct, quantum fusion tensor category and applications , Proc. Lond. Math. Soc. (3) 95 (2007), 567–608. · Zbl 1133.17010 · doi:10.1112/plms/pdm017
[11] M. Kashiwara, T. Miwa and E. Stern: Decomposition of \(q\)-deformed Fock spaces , Selecta Math. (N.S.) 1 (1995), 787–805. · Zbl 0857.17013 · doi:10.1007/BF01587910
[12] G. Lusztig: Quivers, perverse sheaves, and quantized enveloping algebras , J. Amer. Math. Soc. 4 (1991), 365–421. JSTOR: · Zbl 0738.17011 · doi:10.2307/2939279
[13] G. Lusztig: Remarks on quiver varieties , Duke Math. J. 105 (2000), 239–265. · Zbl 1017.20040 · doi:10.1215/S0012-7094-00-10523-6
[14] I.G. Macdonald: Affine Hecke algebras and orthogonal polynomials , Séminaire Bourbaki, Vol. 1994/95, Astérisque (1996), Exp. No. 797, 4, 189–207. · Zbl 0883.33008
[15] H. Nakajima: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , Duke Math. J. 76 (1994), 365–416. · Zbl 0826.17026 · doi:10.1215/S0012-7094-94-07613-8
[16] H. Nakajima: Quiver varieties and finite-dimensional representations of quantum affine algebras , J. Amer. Math. Soc. 14 (2001), 145–238. JSTOR: · Zbl 0981.17016 · doi:10.1090/S0894-0347-00-00353-2
[17] E.M. Opdam: Harmonic analysis for certain representations of graded Hecke algebras , Acta Math. 175 (1995), 75–121. · Zbl 0836.43017 · doi:10.1007/BF02392487
[18] Y. Saito, K. Takemura and D. Uglov: Toroidal actions on level \(1\) modules of \(U_{q}(\widehat{\mathrm{sl}}_{n})\) , Transform. Groups 3 (1998), 75–102. · Zbl 0915.17012 · doi:10.1007/BF01237841
[19] O. Schiffmann: The Hall algebra of a cyclic quiver and canonical bases of Fock spaces , Internat. Math. Res. Notices 2000 , 413–440. · Zbl 0966.16005 · doi:10.1155/S1073792800000234
[20] K. Takemura and D. Uglov: Level-\(0\) action of \(U_{q}(\widehat{\mathfrak{sl}}_{n})\) on the \(q\)-deformed Fock spaces , Comm. Math. Phys. 190 (1998), 549–583. · Zbl 0915.17014 · doi:10.1007/s002200050252
[21] D. Uglov: The trigonometric counterpart of the Haldane Shastry model , hep-th/9508145.
[22] M. Varagnolo and E. Vasserot: Schur duality in the toroidal setting , Comm. Math. Phys. 182 (1996), 469–483. · Zbl 0879.17007 · doi:10.1007/BF02517898
[23] M. Varagnolo and E. Vasserot: Double-loop algebras and the Fock space , Invent. Math. 133 (1998), 133–159. · Zbl 0904.17014 · doi:10.1007/s002220050242
[24] M. Varagnolo and E. Vasserot: On the decomposition matrices of the quantized Schur algebra , Duke Math. J. 100 (1999), 267–297. · Zbl 0962.17006 · doi:10.1215/S0012-7094-99-10010-X
[25] M. Varagnolo and E. Vasserot: On the \(K\)-theory of the cyclic quiver variety , Internat. Math. Res. Notices 1999 , 1005–1028. · Zbl 1014.17017 · doi:10.1155/S1073792899000525
[26] M. Varagnolo and E. Vasserot: Canonical bases and quiver varieties , Represent. Theory 7 (2003), 227–258. · Zbl 1055.17007 · doi:10.1090/S1088-4165-03-00154-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.