×

SYZ duality for parabolic Higgs moduli spaces. (English) Zbl 1246.14020

Summary: We prove the SYZ (Strominger-Yau-Zaslow) duality for the moduli space of full flag parabolic Higgs bundles over a compact Riemann surface. In T. Hausel and M. Thaddeus [J. Am. Math. Soc. 16, No.2, 303–329 (2003; Zbl 1015.14018)], the SYZ duality was proved for moduli spaces of Higgs vector bundles over a compact Riemann surface.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14H60 Vector bundles on curves and their moduli
14F25 Classical real and complex (co)homology in algebraic geometry
53C08 Differential geometric aspects of gerbes and differential characters

Citations:

Zbl 1015.14018

References:

[1] Beauville, A.; Laszlo, Y.; Sorger, C., The Picard group of the moduli of \(G\)-bundles on a curve, Compos. Math., 112, 183-216 (1998) · Zbl 0976.14024
[2] Biswas, I.; Mukherjee, A., Symplectic structures on moduli spaces of parabolic Higgs bundles and Hilbert scheme, Comm. Math. Phys., 240, 149-159 (2003) · Zbl 1052.14033
[3] Boden, H. U.; Yokogawa, K., Rationality of moduli spaces of parabolic bundles, J. Lond. Math. Soc., 59, 461-478 (1999) · Zbl 1023.14025
[4] Deligne, P.; Milne, J. S., Tannakian categories, (Hodge Cycles, Motives, and Shimura varieties. Hodge Cycles, Motives, and Shimura varieties, Lect. Notes Math., vol. 900 (1982), Springer-Verlag: Springer-Verlag Berlin-New York), 101-229 · Zbl 0477.14004
[5] Donagi, R. Y.; Gaitsgory, D., The gerbe of Higgs bundles, Transform. Groups, 7, 109-153 (2002) · Zbl 1083.14519
[6] Donagi, R. Y.; Pantev, T., Langlands duality for Hitchin systems, Invent. Math. (2012) · Zbl 1263.53078
[7] Frenkel, E.; Witten, E., Geometric endoscopy and mirror symmetry, Commun. Number Theory Phys., 2, 113-283 (2008) · Zbl 1223.14014
[8] Giraud, J., Cohomologie non abélienne (1971), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0135.02301
[9] Gómez, T. L.; Logares, M., A Torelli theorem for the moduli space of parabolic Higgs bundles, Adv. Geom., 11, 429-444 (2011) · Zbl 1226.14018
[10] Gukov, S.; Witten, E., Gauge theory, ramification, and the geometric Langlands program, (Current Developments in Mathematics, 2006 (2008), Int. Press: Int. Press Somerville, MA), 35-180 · Zbl 1237.14024
[11] Hausel, T.; Thaddeus, M., Examples of mirror partners arising from integrable systems, C. R. Acad. Sci. Paris Math., 333, 313-318 (2001) · Zbl 1009.14005
[12] Hausel, T.; Thaddeus, M., Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math., 153, 197-229 (2003) · Zbl 1043.14011
[13] Hitchin, N. J., Lectures on special Lagrangian submanifolds, (Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, Cambridge, MA, 1999. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, Cambridge, MA, 1999, AMS/IP Stud. Adv. Math., vol. 23 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 151-182 · Zbl 1079.14522
[14] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., 55, 59-126 (1987) · Zbl 0634.53045
[15] Hitchin, N. J., Stable bundles and integrable systems, Duke Math. J., 54, 9-114 (1987) · Zbl 0627.14024
[16] Hitchin, N. J., Langlands duality and \(G_2\) spectral curves, Quart. J. Math., 58, 319-344 (2007) · Zbl 1144.14034
[17] Logares, M.; Martens, J., Moduli of parabolic Higgs bundles and Atiyah algebroids, J. Reine Angew. Math., 649, 89-116 (2010) · Zbl 1223.14038
[18] Mehta, V.; Seshadri, C., Moduli of vector bundles on curves with parabolic structures, Math. Ann., 248, 205-239 (1980) · Zbl 0454.14006
[19] Mumford, D., Abelian Varieties, Tata Inst. Fund. Res. Stud. Math., vol. 5 (2008), Hindustan Book Agency: Hindustan Book Agency New Delhi, with appendices by C.P. Ramanujam and Yuri Manin, corrected reprint of the second (1974) edition · Zbl 0199.24601
[20] Seshadri, C. S., Quotient space by an abelian variety, Math. Ann., 152, 185-194 (1963) · Zbl 0115.38902
[21] Strominger, A.; Yau, S.-T.; Zaslow, E., Mirror symmetry is T-duality, Nuclear Phys. B, 479, 243-259 (1996) · Zbl 0896.14024
[22] Witten, E., Mirror symmetry, Hitchinʼs equations, and Langlands duality, (The Many Facets of Geometry (2010), Oxford Univ. Press: Oxford Univ. Press Oxford), 113-128 · Zbl 1298.81151
[23] Yokogawa, K., Infinitesimal deformation of parabolic Higgs sheaves, Int. J. Math., 6, 125-148 (1995) · Zbl 0830.14007
[24] Yokogawa, K., Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto Univ., 33, 451-504 (1993) · Zbl 0798.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.