×

Some problems on \(p\)-class field towers. (English) Zbl 1245.11110

Let \(p\) be an odd prime number, and let \(K\) denote a CM-field, i.e., a totally complex quadratic extension \(K/K^+\) of a totally real algebraic number field \(K^+\). Let \(K_\infty\) denote the cyclotomic \(\mathbb Z_p\)-extension of \(K\), and \(K_n\) its \(n\)-th layer. Let us denote the \(p\)-class group of a field \(K\) by \(A_K\), and let \(\widetilde{G}_\infty\) denote the Galois group of the maximal unramified pro-\(p\) extension \(\widetilde{L}/K_\infty\). The main result of this article is the following: assume that \(\widetilde{G}_\infty\) is a free pro-\(p\) group with rank \(\lambda \geq 2\), that \(p\) does not split in \(K_\infty/\mathbb Q\), and that the class number of \(K^+\) is not divisible by \(p\). Then \(\widetilde{L} K_1/K_1\) is an infinite extension if \(p \geq 5\) and \(A_K\) has rank \(2\), or if \(p = 3\) and \(A_K\) is isomorphic to \(\mathbb Z/3^a\mathbb Z \oplus \mathbb Z/3^b\mathbb Z\) for integers \(a, b \geq 2\). For fields where the \(p\)-class group \(A_K\) has rank \(\geq 3\), this result is classical [H. Kisilevsky and J. Labute, “ On a sufficient condition for the p-class tower of a CM-field to be infinite”, Théorie des nombres, C. R. Conf. Int., Québec/Can. 1987, 556–560 (1989; Zbl 0696.12009)]. The authors also determine \(\widetilde{G}_\infty\) for a class of fields satisfying several rather strong conditions.

MSC:

11R23 Iwasawa theory

Citations:

Zbl 0696.12009

References:

[1] J. L. Dyer and G. P. Scott, Periodic automorphisms of free groups, Comm. Algebra 3 (1975), 195-201. · Zbl 0304.20029 · doi:10.1080/00927877508822042
[2] S. Fujii, On the maximal pro-\(p\) extension unramified outside \(p\) of an imaginary quadratic field, submitted. · Zbl 1143.11041
[3] T. Fukuda, Remarks on \(\mathbf{Z}_p\)-extensions of number fields, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264-266. · Zbl 0823.11064 · doi:10.3792/pjaa.70.264
[4] F. Hajir, On a theorem of Koch, Pacific J. Math. 176 (1996), 15-18. · Zbl 0879.11066
[5] F. Hajir, On the growth of \(p\)-class groups in \(p\)-class field towers, J. Algebra 188 (1997), 256-271. · Zbl 0879.11069 · doi:10.1006/jabr.1996.6849
[6] W. N. Herfort, L. Ribes and P. Zalesskii, \(p\)-extensions of free pro-\(p\) groups, (English summary) Forum Math. 11 (1999), 49-61. · Zbl 0934.20022 · doi:10.1515/form.11.1.49
[7] U. Jannsen, The splitting of the Hochschild-Serre spectral sequence for a product of groups, Canad. Math. Bull. 33 (1990), 181-183. · Zbl 0706.20039 · doi:10.4153/CMB-1990-030-x
[8] Y. Kida, \(l\)-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528. · Zbl 0455.12007 · doi:10.1016/0022-314X(80)90042-6
[9] H. Kisilevsky and J. Labute, On a sufficient condition for the \(p\)-class tower of a CM-field to be infinite, In: Proceedings of the Int. Number Conf, Laval (1987), Berlin (1989). · Zbl 0696.12009
[10] H. Koch, Galois theory of \(p\)-extensions , Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. · Zbl 1023.11002
[11] H. Koch and B. B. Venkov, Über den \(p\)-Klassenkörperturm eines imaginärquadratischen Zahlkörpers, Soc. Math. France, Astérisque 24 - 25 (1975), 57-67. · Zbl 0335.12021
[12] L. V. Kuz’min, Local extensions associated with \(l\)-extensions with restricted ramification, Izv. Akad. Nauk SSSR 39 (1975), no. 4 (English translation in Math. USSR Izv. 9 (1975), 693-726). · Zbl 0342.12007 · doi:10.1070/IM1975v009n04ABEH001495
[13] J. Minardi, Iwasawa modules for \(\mathbf{Z}^d_p\)-extensions of algebraic number fields, thesis, Harvard Univ., 1986.
[14] Y. Mizusawa, On the maximal unramified pro-2-extension of \(\mathbb Z_ 2\)-extensions of certain real quadratic fields, J. Number Theory 105 (2004), 203-211. · Zbl 1061.11061 · doi:10.1016/j.jnt.2003.10.002
[15] Y. Mizusawa, On the maximal unramified pro-2-extension of \(\mathbb Z_ 2\)-extensions of certain real quadratic fields II, Acta Arith. 119 (2005), 93-107. · Zbl 1151.11055 · doi:10.4064/aa119-1-7
[16] V. G. Mukhamedov, Local extensions associated with the \(l\)-extensions of number fields with restricted ramification, Mat. Zametki 35 (1984), 481-490 (English translation in Math. Notes 35, 253-258). · Zbl 0576.12015 · doi:10.1007/BF01139984
[17] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields , Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag, Berlin, 2000. · Zbl 0948.11001
[18] M. Ozaki, Non-abelian Iwasawa theory of \(\mathbf{Z}_p\)-extensions,
[19] I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142-146. · Zbl 0077.25103 · doi:10.2307/2032829
[20] C. Scheiderer, The structure of some virtually free pro-\(p\) groups, Proc. Amer. Math. Soc. 127 (1999), 695-700. · Zbl 0915.20012 · doi:10.1090/S0002-9939-99-04765-6
[21] L. C. Washington, Introduction to cyclotomic fields , second edition, GTM 83, Springer-Verlag, 1997. · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.