×

Topological sensitivity analysis in the context of ultrasonic non-destructive testing. (English) Zbl 1244.74105

Summary: This paper deals with the use of the topological derivative in detection problems involving waves. In the first part, a framework to carry out the topological sensitivity analysis in this context is proposed. Arbitrarily shaped holes and cracks with Neumann boundary condition in 2 and 3 space dimensions are considered. In the second part, a numerical example concerning the treatment of ultrasonic probing data in metallic plates is presented. With moderate noise in the measurements, the defects (air bubbles) are detected and satisfactorily localized by means of a single sensitivity computation.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
47J25 Iterative procedures involving nonlinear operators
Full Text: DOI

References:

[1] Schumacher, A.; Kobolev, V. V.; Eschenauer, H. A., Bubble method for topology and shape optimization of structures, J Struct Optim, 8, 42-51 (1994)
[2] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J Control Optim, 37, 1241-1272 (1999) · Zbl 0940.49026
[3] Masmoudi, M., The topological asymptotic, (Glowinski, R.; Kawarada, H.; Periaux, J., Computational methods for control applications. GAKUTO International Series, Mathematical Sciences and Applications, vol. 16 (2001)), 53-72 · Zbl 1082.93584
[4] Garreau, S.; Guillaume, Ph.; Masmoudi, M., The topological asymptotic for PDE systems: the elasticity case, SIAM J Control Optim, 39, 6, 1756-1778 (2001) · Zbl 0990.49028
[5] Guillaume, Ph.; Sididris, K., The topological asymptotic expansion for the Dirichlet problem, SIAM J Control Optim, 41, 4, 1042-1072 (2002) · Zbl 1053.49031
[6] Guillaume, Ph.; Sididris, K., Topological sensitivity and shape optimization for the Stokes equations, SIAM J Control Optim, 43, 1, 1-31 (2004) · Zbl 1093.49029
[7] Nazarov, S. A.; Sokolowski, J., Asymptotic analysis of shape functionals, J Math Pures Appl, 82, 125-196 (2003) · Zbl 1031.35020
[8] Feijóo, R. A.; Novotny, A. A.; Padra, C.; Taroco, E., The topological derivative for the Poisson’s problem, Math Models Methods Appl Sci, 13, 12, 1825-1844 (2003) · Zbl 1063.49030
[9] Novotny, A. A.; Feijóo, R. A.; Padra, C.; Taroco, E., Topological sensitivity analysis, Comput Methods Appl Mech Eng, 192, 803-829 (2003) · Zbl 1025.74025
[10] Samet, B.; Amstutz, S.; Masmoudi, M., The topological asymptotic for the Helmholtz equation, SIAM J Control Optim, 42, 5, 1523-1544 (2003) · Zbl 1051.49029
[11] Ammari, A.; Kang, H., A new method for reconstructing electromagnetic inhomogeneities of small volume, Inverse Problems, 19, 63-71 (2003) · Zbl 1020.35113
[12] Ammari, H.; Kang, H., Reconstruction of small inhomogeneities from boundary measurements. Lecture notes in mathematics, vol. 1846 (2004), Springer: Springer Berlin · Zbl 1113.35148
[13] Ammari, H.; Kang, H., Reconstruction of elastic inclusions of small volume via dynamic measurements, Appl Math Optim, 54, 223-235 (2006) · Zbl 1102.35306
[14] Capdeboscq, Y.; Vogelius, M. S., A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math Models Methods Appl Sci, 37, 159-173 (2003) · Zbl 1137.35346
[15] Vogelius, M. S.; Volkov, D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, Math Model Numer Anal, 34, 4, 723-748 (2000) · Zbl 0971.78004
[16] Bonnet, M.; Guzina, B. B., Sounding of finite solid bodies by way of topological derivative, Int J Numer Meth Eng, 61, 2344-2373 (2004) · Zbl 1075.74564
[17] Masmoudi, M., Numerical solution for exterior problems, (Numerische mathematik, vol. 51 (1987), Springer: Springer Berlin) · Zbl 0622.65096
[18] Jaoua M. Equations intégrales pour un problème singulier dans le plan. Thèse, Université Pierre et Marie Curie; 1977.; Jaoua M. Equations intégrales pour un problème singulier dans le plan. Thèse, Université Pierre et Marie Curie; 1977.
[19] Giroire, J.; Nédélec, J.-C., Numerical solution of an exterior Neumann problem using a double layer potential, Math Comput, 32, 144, 973-990 (1978) · Zbl 0405.65060
[20] Dautray, R.; Lions, J.-L., Analyse mathématique et calcul numérique pour les sciences et les techniques (1987), Masson, collection CEA · Zbl 0708.35002
[21] Pólya G, Szegö G. Isoperimetric inequalities in mathematical physics. Annals of mathematical studies no. 27, Princeton University Press, 1951.; Pólya G, Szegö G. Isoperimetric inequalities in mathematical physics. Annals of mathematical studies no. 27, Princeton University Press, 1951. · Zbl 0044.38301
[22] Friedman, A.; Vogelius, M. S., Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependence, Arch Ration Mech Anal, 105, 4, 299-326 (1989) · Zbl 0684.35087
[23] Ammari, H.; Kang, H.; Kim, K., Polarization tensors and effective properties of anisotropic composite materials, J Differ Equat, 215, 401-428 (2005) · Zbl 1073.35019
[24] Nishimura, N.; Kobayashi, S., A boundary integral equation method for an inverse problem related to crack detection, Int J Numer Methods Eng, 32, 1371-1387 (1991) · Zbl 0760.73072
[25] Virieux, J., P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 51, 4, 889-901 (1986)
[26] Tanter M. Software URL: \( \langle;\) http://www.loa.espci.fr/ michael/fr/acel/aceltest.htm \(\rangle;\).; Tanter M. Software URL: \( \langle;\) http://www.loa.espci.fr/ michael/fr/acel/aceltest.htm \(\rangle;\).
[27] Collino, F.; Tsogka, C., Application of the perfectly matched layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66, 1, 294-307 (2001)
[28] Amstutz S. Aspects théoriques et numériques en optimisation de forme topologique. Doctoral thesis, INSA Toulouse; 2003.; Amstutz S. Aspects théoriques et numériques en optimisation de forme topologique. Doctoral thesis, INSA Toulouse; 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.