×

Topologically invariant Chern numbers of projective varieties. (English) Zbl 1244.57048

The author proves the following main results:
Theorem 1 A rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers.
Theorem 2. In the case of complex dimension \(\geq 3\), a rational linear combination of Chern numbers is a diffeomorphism invariant of smooth complex projective varieties if and only if it is a multiple of the Euler number. In the case of complex dimension 2, both Chern numbers \(c_2\) and \(c_1^2\) are diffeomorphism invariants of complex projective surfaces.
Replacing diffeomorphism by homeomorphism, the author shows that
Theorem 3. A rational combination of Chern numbers is a homeomorphism invariant of smooth complex projective varieties if and only if it is a multiple of the Euler number.
These results solve a long-time problem posed by Hirzebruch. In addition, the author also determine the linear combination of Chern numbers that can be bounded in terms of Betti numbers.
Reviewer: Zhi Lü (Shanghai)

MSC:

57R20 Characteristic classes and numbers in differential topology
57R77 Complex cobordism (\(\mathrm{U}\)- and \(\mathrm{SU}\)-cobordism)
14J99 Surfaces and higher-dimensional varieties
55N22 Bordism and cobordism theories and formal group laws in algebraic topology

References:

[1] Borel, A.; Hirzebruch, F., Characteristic classes and homogeneous spaces, I, II, Amer. J. Math.. Amer. J. Math., Amer. J. Math., 81, 315-382 (1959), reprinted in [8]
[2] Buoncristiano, S.; Hacon, D., The geometry of Chern numbers, Ann. Math., 118, 1-7 (1983) · Zbl 0529.57017
[3] Chen, Z., On the geography of surfaces - simply connected minimal surface of positive index, Math. Ann., 277, 141-164 (1987) · Zbl 0595.14027
[4] Freedman, M. H., The topology of four-manifolds, J. Differential Geom., 17, 357-454 (1982) · Zbl 0528.57011
[5] Grothendieck, A., La théorie des classes de Chern, Bull. Soc. Math. France, 86, 137-154 (1958) · Zbl 0091.33201
[6] Hirzebruch, F., Some problems on differentiable and complex manifolds, Ann. Math., 60, 213-236 (1954), reprinted in [8] · Zbl 0056.16803
[7] Hirzebruch, F., Neue topologische Methoden in der algebraischen Geometrie, 2 (1962), Springer-Verlag, reprinted in [8] · Zbl 0101.38301
[8] Hirzebruch, F., Gesammelte Abhandlungen, Band I (1987), Springer-Verlag · Zbl 0627.01044
[9] Hirzebruch, F., The projective tangent bundles of a complex three-fold, Pure Appl. Math. Q., 1, 441-448 (2005) · Zbl 1187.14009
[10] Kahn, P. J., Chern numbers and oriented homotopy type, Topology, 7, 69-93 (1968) · Zbl 0152.40603
[11] Kotschick, D., Orientation-reversing homeomorphisms in surface geography, Math. Ann., 292, 375-381 (1992) · Zbl 0753.14034
[12] Kotschick, D., Orientations and geometrisations of compact complex surfaces, Bull. London Math. Soc., 29, 145-149 (1997) · Zbl 0896.32014
[13] Kotschick, D., Chern numbers and diffeomorphism types of projective varieties, J. Topol., 1, 518-526 (2008) · Zbl 1145.57023
[14] Kotschick, D., Characteristic numbers of algebraic varieties, Proc. Natl. Acad. USA, 106, 25, 10114-10115 (2009) · Zbl 1203.14049
[15] Kotschick, D.; Terzić, S., Chern numbers and the geometry of partial flag manifolds, Comment. Math. Helv., 84, 587-616 (2009) · Zbl 1169.53039
[16] Libgober, A. S.; Wood, J. W., Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Differential Geom., 32, 139-154 (1990) · Zbl 0711.53052
[17] Milnor, J. W., On the cobordism ring \(\Omega^\star\) and a complex analogue, part I, Amer. J. Math., 82, 505-521 (1960), reprinted in [18] · Zbl 0095.16702
[18] Milnor, J. W., Collected Papers of John Milnor, III - Differential Topology (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1122.01020
[19] Moishezon, B.; Teicher, M., Simply-connected algebraic surfaces of positive index, Invent. Math., 89, 601-643 (1987) · Zbl 0627.14019
[20] Novikov, S. P., Homotopy properties of Thom complexes, Mat. Sb. (N.S.), 57, 407-442 (1962), (in Russian) · Zbl 0193.51801
[21] Novikov, S. P., Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR. Dokl. Akad. Nauk SSSR, Soviet Math. Dokl., 6, 921-923 (1965), (in Russian); English transl.: · Zbl 0146.19502
[22] Persson, U., Chern invariants of surfaces of general type, Compos. Math., 43, 3-58 (1981) · Zbl 0479.14018
[23] Peterson, F. P., Some remarks on Chern classes, Ann. Math., 69, 414-420 (1959) · Zbl 0123.16502
[24] Serre, J.-P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble), 6, 1-42 (1955-1956) · Zbl 0075.30401
[25] Smale, S., On the structure of manifolds, Amer. J. Math., 84, 387-399 (1962) · Zbl 0109.41103
[26] Thom, R., Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28, 17-86 (1954) · Zbl 0057.15502
[27] Thom, R., Travaux de Milnor sur le cobordisme, (Séminaire Bourbaki, vol. 5. Séminaire Bourbaki, vol. 5, Exp., vol. 180 (1995), Soc. Math. France: Soc. Math. France Paris), 169-177, reprinted in [18]
[28] Wall, C. T.C., On simply-connected 4-manifolds, J. London Math. Soc., 39, 141-149 (1964) · Zbl 0131.20701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.