×

Arithmetical rank of squarefree monomial ideals of small arithmetic degree. (English) Zbl 1244.13016

The authors explore the arithmical rank of certain classes of squarefree monomial ideals. The starting point of their article is the following chain of inequalities for a squarefree monomial ideal \(I \in k[\underline{x}]=:R\): \[ \text{ht} I \leq \text{pd}_R R/I \leq \text{arank} I \leq \mu (I) \] where arank denotes the arithmetical rank of \(I\), i.e. the minimal number of elements of \(I\) needed to generate an ideal with the same radical as \(I\), and \(\mu(I)\) the minimal number of generators of \(I\). They then identify and study three classes of ideals for which equality in the middle holds.
These three classes are: 1) \(\mu(I) \leq \text{pd}_R R/I +1\).
In this case, they not only prove the equality, but proceed further to study this class establishing a classification.
2) \(\mathrm{arithdeg} I = \mathrm{reg} I\).
Here the number of prime components equals the Castelnuovo-Mumford regularity of the ideal. Such ideals arise as the Alexander dual of squarefree monomial ideals for which the minimal number of generators coincides with the projective dimension.
3) \(\mathrm{arithdeg} I = \mathrm{indeg} I + 1\).
This case covers the Alexander dual of ideals from class 1.

MSC:

13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
Full Text: DOI

References:

[1] Barile, M.: On the number of equations defining certain varieties. Manuscripta Math. 91, 483-494 (1996) · Zbl 0874.14044 · doi:10.1007/BF02567968
[2] Barile, M.: A note on monomial ideals. Arch. Math. 87, 516-521 (2006) · Zbl 1112.13001 · doi:10.1007/s00013-006-1834-3
[3] Barile, M.: A note on the edge ideals of Ferrers graphs. Preprint, math.AC/0606353 · Zbl 1166.13024
[4] Barile, M.: On the arithmetical rank of the edge ideals of forests. Preprint, math.AC/0607306 · Zbl 1166.13024
[5] Barile, M.: On the arithmetical rank of certain monomial ideals. Preprint, math.AC/0611790 · Zbl 1166.13024
[6] Barile, M.: Arithmetical ranks of Stanley-Reisner ideals via linear algebra. Preprint, math.AC/0703258 · Zbl 1155.13002
[7] Frühbis-Krüger, A., Terai, N.: Bounds for the regularity of monomial ideals. Matematiche (Catania) 53, 83-97 (1998) · Zbl 0951.13017
[8] Hoa, L.T., Trung, N.V.: On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals. Math. Z. 229, 519-537 (1998) · Zbl 0931.13015 · doi:10.1007/PL00004668
[9] Lyubeznik, G.; Greco, S. (ed.); Strano, R. (ed.), On the local cohomology modules \(H^i_{\mathfrak{a}}(R)\) for ideals \(\mathfrak{a}\) generated by monomials in an R-sequence, Acireale, 1983, Berlin · Zbl 0578.13012 · doi:10.1007/BFb0099364
[10] Schenzel, P.: Applications of Koszul homology to numbers of generators and syzygies. J. Pure Appl. Algebra 114, 287-303 (1997) · Zbl 0878.13006 · doi:10.1016/S0022-4049(95)00175-1
[11] Schenzel, P., Vogel, W.: On set-theoretic intersections. J. Algebra 48, 401-408 (1977) · Zbl 0411.14014 · doi:10.1016/0021-8693(77)90317-9
[12] Schmitt, T., Vogel, W.: Note on set-theoretic intersections of subvarieties of projective space. Math. Ann. 245, 247-253 (1979) · Zbl 0399.14032 · doi:10.1007/BF01673509
[13] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. Springer, Berlin (1986) · Zbl 0606.13018
[14] Terai, N.: Alexander duality in Stanley-Reisner rings. In: Hibi (ed.) Affine Algebraic Geometry, in Honor of Professor Masayoshi Miyanishi on the Occasion of His Retirement from Osaka University, pp. 449-462. Osaka University Press (2007) · Zbl 1128.13014
[15] Yan, Z.: An étale analog of the Goresky-Macpherson formula for subspace arrangements. J. Pure Appl. Algebra 146, 305-318 (2000) · Zbl 1005.14007 · doi:10.1016/S0022-4049(98)00128-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.