×

Composite rational functions expressible with few terms. (English) Zbl 1244.12001

Let \(k\) be a field of characteristic zero, and let \(f(x)=P(x)/Q(x)\in k(x)\) be a rational function which is “lacunary”, in the sense that the polynomials \(P\) and \(Q\) have altogether at most a given number \(\ell\) of terms (the polynomials \(P\) and \(Q\) need not be coprime). The paper studies the possible non-trivial decompositions of such a function, namely, the expressions of type \(f(x)=g(h(x))\) where \(g\) and \(h\) are rational functions of degree \(>1\). Let us call a decomposition of this type exceptional if \(h(x)=\lambda(ax^n+bx^{-n})\) for \(a,b\in k\), \(n\in{\mathbb N}\) and \(\lambda\in\text{PGL}_2(k)\).
The main theorem states the following: if \(f(x)=g(h(x))\) and the decomposition is neither trivial nor exceptional, then \(\deg g \leq 2016 \cdot 5^\ell\).

MSC:

12E05 Polynomials in general fields (irreducibility, etc.)
11R09 Polynomials (irreducibility, etc.)
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
Full Text: DOI

References:

[1] Avanzi, R., Zannier, U.: The equation f (X) = f (Y ) in rational functions X = X(t ), Y = Y (t ). Compos. Math. 139, 263-295 (2003) · Zbl 1050.14020 · doi:10.1023/B:COMP.0000018136.23898.65
[2] Beukers, F., Smyth, C. J.: Cyclotomic points on curves. In: Number Theory for the Mil- lennium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 67-85 (2002) · Zbl 1029.11009
[3] Bilu, Y., Tichy, R.: The Diophantine equation f (x) = g(y). Acta Arith. 95, 261-288 (2000) · Zbl 0958.11049
[4] Brownawell, D., Masser, D.: Vanishing sums in function fields. Math. Proc. Cambridge Philos. Soc. 100, 427-434 (1986) · Zbl 0612.10010 · doi:10.1017/S0305004100066184
[5] Dixon, J. D., Mortimer, B.: Permutation Groups. Grad. Texts in Math. 163, Springer, New York (1996) · Zbl 0951.20001
[6] Dvornicich, R., Zannier, U.: Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps). Duke Math. J. 139, 527-554 (2007) · Zbl 1127.11040 · doi:10.1215/S0012-7094-07-13934-6
[7] Fried, M.: On a conjecture of Schur. Michigan Math. J. 17, 41-55 (1970) · Zbl 0169.37702 · doi:10.1307/mmj/1029000374
[8] Fried, M.: Arithmetical properties of function fields. II. The generalized Schur problem. Acta Arith. 25, 225-258 (1974) · Zbl 0229.12020
[9] Gabrielov, A., Vorobjov, N.: Complexity of computations with Pfaffian and Noetherian func- tions. In: Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, NATO Sci. Ser. II Math. Phys. Chem. 137, Kluwer, Dordrecht, 211-250 (2004)
[10] Lang, S.: Introduction to Algebraic and Abelian Functions. 2nd ed., Grad. Texts in Math. 89, Springer, New York (1982) · Zbl 0513.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.