×

The split decomposition of a \(k\)-dissimilarity map. (English) Zbl 1244.05057

Summary: A \(k\)-dissimilarity map on a finite set \(X\) is a function \(D:{X \choose k} \to \mathbb R\) assigning a real value to each subset of \(X\) with cardinality \(k, k\geq 2\). Such functions, also sometimes known as \(k\)-way dissimilarities, \(k\)-way distances, or \(k\)-semimetrics, are of interest in many areas of mathematics, computer science and classification theory, especially 2-dissimilarity maps (or distances) which are a generalisation of metrics.
In this paper, we show how regular subdivisions of the \(k\)th hypersimplex can be used to obtain a canonical decomposition of a \(k\)-dissimilarity map into the sum of simpler \(k\)-dissimilarity maps arising from bipartitions or splits of \(X\).
In the special case \(k=2\), this is nothing other than the well-known split decomposition of a distance due to H.-J. Bandelt and A. W. M. Dress [“A canonical decomposition theory for metrics on a finite set”, Adv. Math. 92, No. 1, 47–105 (1992; Zbl 0789.54036)], a decomposition that is commonly to construct phylogenetic trees and networks.
Furthermore, we characterise those sets of splits that may occur in the resulting decompositions of \(k\)-dissimilarity maps. As a corollary, we also give a new proof of a theorem of L. Pachter and D. E. Speyer [“Reconstructing trees from subtree weights”, Appl. Math. Lett. 17, No. 6, 615–621 (2004; Zbl 1055.05033)] for recovering \(k\)-dissimilarity maps from trees.

MSC:

05C05 Trees
52B11 \(n\)-dimensional polytopes
92D15 Problems related to evolution

References:

[1] Bandelt, H.-J.; Dress, A. W.M., A canonical decomposition theory for metrics on a finite set, Adv. Math., 92, 47-105 (1992) · Zbl 0789.54036
[2] Bocci, C.; Cools, F., A tropical interpretation of \(m\)-dissimilarity maps, Appl. Math. Comput., 212, 349-356 (2009) · Zbl 1220.05016
[3] Cools, F., On the relation between weighted trees and tropical Grassmannians, J. Symbolic Comput., 44, 1079-1086 (2009) · Zbl 1207.14061
[4] De Loera, J. A.; Rambau, J.; Santos, F., Triangulations: Structures for Algorithms and Applications (2010), Springer-Verlag · Zbl 1207.52002
[5] Deza, M. M.; Laurent, M., Geometry of Cuts and Metrics (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0885.52001
[6] Deza, M. M.; Rosenberg, I. G., \(n\)-semimetrics, European J. Combin., 21, 797-806 (2000) · Zbl 0988.54029
[7] Dress, A. W.M., Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. Math., 53, 321-402 (1984) · Zbl 0562.54041
[8] Gabrièlov, A. M.; Gelʼfand, I. M.; Losik, M. V., Combinatorial computation of characteristic classes, Funct. Anal. Appl., 9, 48-49 (1975) · Zbl 0312.57015
[9] Hayashi, C., Two dimensional quantification based on the measure of dissimilarity among three elements, Ann. Inst. Stat. Math., 24, 251-257 (1972) · Zbl 0318.62044
[10] Heiser, W. J.; Bennani, M., Triadic distance models: axiomatization and least squares representation, J. Math. Psych., 41, 189-206 (1997) · Zbl 1072.91639
[11] S. Herrmann, K.T. Huber, V. Moulton, A. Spillner, Recognizing treelike \(k\); S. Herrmann, K.T. Huber, V. Moulton, A. Spillner, Recognizing treelike \(k\) · Zbl 1360.62333
[12] Herrmann, S.; Jensen, A.; Joswig, M.; Sturmfels, B., How to draw tropical planes, Electron. J. Combin., 16 (2009), Research Paper 6, 26 p · Zbl 1195.14080
[13] Herrmann, S.; Joswig, M., Splitting polytopes, Münster J. Math., 1, 109-141 (2008) · Zbl 1159.52016
[14] Huson, D. H.; Bryant, D., Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 23, 254-267 (2006)
[15] Iriarte Giraldo, B., Dissimilarity vectors of trees are contained in the tropical Grassmannian, Electron. J. Combin., 17 (2010), Note 6, 7 p · Zbl 1184.05023
[16] Isbell, J. R., Six theorems about injective metric spaces, Comment. Math. Helv., 39, 65-76 (1964) · Zbl 0151.30205
[17] Joly, S.; Le Calvé, G., Three-way distances, J. Classification, 12, 191-205 (1995) · Zbl 0836.62046
[18] Levy, D.; Yoshida, R.; Pachter, L., Beyond pairwise distances: Neighbor-joining with phylogenetic diversity estimates, Mol. Biol. Evol., 23, 491-498 (2006)
[19] Pachter, L.; Speyer, D. E., Reconstructing trees from subtree weights, Appl. Math. Lett., 17, 615-621 (2004) · Zbl 1055.05033
[20] Semple, C.; Steel, M., Phylogenetics (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1043.92026
[21] Speyer, D. E., Tropical linear spaces, SIAM J. Discrete Math., 22, 1527-1558 (2008) · Zbl 1191.14076
[22] Speyer, D. E.; Sturmfels, B., The tropical Grassmannian, Adv. Geom., 4, 389-411 (2004) · Zbl 1065.14071
[23] Warrens, M. J., \(n\)-way metrics, J. Classification, 27, 173-190 (2010) · Zbl 1337.54019
[24] Ziegler, G. M., Lectures on Polytopes (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.