×

An evaluation of the extrinsic cells number in a memory array using cross-correlation products and deconvolution: an instance of a microelectronics experimental inverse problem. (English) Zbl 1243.78037

Summary: This work is devoted to a new, fast and efficient method of evaluating the number of marginal cells in a non-volatile electrical memory array. This extraction from experimental data is fundamentally an inverse problem. The method proposed here is based on simple cross-correlation functions and de-convoluting operations. With the microelectronics device dimension downscaling, the reliability of non-volatile electrical memory has become crucial and any marginal cell can compromise the functioning of the whole array (containing hundreds of thousands of elementary cells). A specific array called cell array structure test (CAST) has been developed as a useful characterization tool to statistically study retention and endurance performance with few experimental operations. However, this device cannot easily count the low number of failed cells among hundreds of thousands. That is why we had to develop a mathematical method to extract this major quantity from measurements. This method has been validated on an EEPROM CAST \(-0.13 \mu \)m technology node, but it is extendable to all memory devices integrated in parallel array and more generally to any electrical measurement done in a similar configuration.

MSC:

78A55 Technical applications of optics and electromagnetic theory
62H20 Measures of association (correlation, canonical correlation, etc.)
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
93B35 Sensitivity (robustness)
Full Text: DOI

References:

[1] A. Allan, 2007 ITRS ORTC, 12/5 MakuhariJapan ITRS Public Conference, 2007
[2] DOI: 10.1016/j.microrel.2007.07.079 · doi:10.1016/j.microrel.2007.07.079
[3] Brown WD, Nonvolatile Semiconductor Memory Technology: A Comprehensive Guide to Understanding and Using NVSM Devices (1998)
[4] Brown WD, Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices (2008)
[5] DOI: 10.1007/978-1-4615-5015-0 · doi:10.1007/978-1-4615-5015-0
[6] DOI: 10.1016/0026-2714(95)00214-6 · doi:10.1016/0026-2714(95)00214-6
[7] DOI: 10.1016/S0026-2714(99)00286-3 · doi:10.1016/S0026-2714(99)00286-3
[8] DOI: 10.1016/j.sse.2004.03.014 · doi:10.1016/j.sse.2004.03.014
[9] DOI: 10.1016/S0038-1101(00)00276-8 · doi:10.1016/S0038-1101(00)00276-8
[10] DOI: 10.1088/0031-9155/48/6/302 · doi:10.1088/0031-9155/48/6/302
[11] DOI: 10.1088/0266-5611/26/8/085002 · Zbl 1202.92006 · doi:10.1088/0266-5611/26/8/085002
[12] DOI: 10.1016/j.microrel.2007.07.083 · doi:10.1016/j.microrel.2007.07.083
[13] DOI: 10.1016/j.sse.2008.06.011 · doi:10.1016/j.sse.2008.06.011
[14] DOI: 10.1063/1.350466 · doi:10.1063/1.350466
[15] Aziza H, Proceedings of the NVMTS’08 pp 105– (2008)
[16] Jackson JD, Classical Electrodynamics (1975)
[17] DOI: 10.1016/j.amc.2004.04.072 · Zbl 1067.65042 · doi:10.1016/j.amc.2004.04.072
[18] Oppenheim AV, Discrete-Time Signal Processing (1989)
[19] DOI: 10.1109/42.56334 · doi:10.1109/42.56334
[20] DOI: 10.1088/0266-5611/16/5/306 · Zbl 0970.35168 · doi:10.1088/0266-5611/16/5/306
[21] DOI: 10.1016/S0022-3093(03)00210-2 · doi:10.1016/S0022-3093(03)00210-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.