×

Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. (English) Zbl 1243.74119

Summary: A new material model is proposed for the description of stress-softening observed in cyclic tension tests of collagenous soft tissues such as arterial walls, for applied loads beyond the physiological level. The modeling framework makes use of terms known from continuum damage mechanics and the concept of internal variables introducing a scalar-valued variable for the representation of fiber damage. A principle is given for the construction of damage models able to reflect remanent strains as a result of microscopic damage in the reinforcing collagen fiber families. Particular internal variables are defined able to capture the nature of arterial tissues that no damage occurs in the physiological loading domain. By application of this principle, specific models are derived and fitted to experimental data. Finally, their applicability in numerical simulations is shown by some representative examples where the damage distribution in arterial cross-sections is analyzed.

MSC:

74L15 Biomechanical solid mechanics
74R20 Anelastic fracture and damage
74N30 Problems involving hysteresis in solids
Full Text: DOI

References:

[1] (Abé, H.; Hayashi, K.; Sato, M., Data Book on Mechanical Properties of Living Cells, Tissues, and Organs (1996), Springer Verlag: Springer Verlag New York)
[2] D. Balzani, Polyconvex anisotropic energies and modeling of damage applied to arterial walls. Ph.d. Thesis, University Duisburg-Essen, Verlag Glückauf Essen, 2006.; D. Balzani, Polyconvex anisotropic energies and modeling of damage applied to arterial walls. Ph.d. Thesis, University Duisburg-Essen, Verlag Glückauf Essen, 2006.
[3] Balzani, D.; Neff, P.; Schröder, J.; Holzapfel, G. A., A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int. J. Solids Struct., 43, 6052-6070 (2006) · Zbl 1120.74632
[4] Balzani, D.; Schröder, J.; Gross, D., Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries, Acta Biomater., 2, 609-618 (2006)
[5] Boehler, J. P., Introduction to the invariant formulation of anisotropic constitutive equations, (Boehler, J. P., Applications of Tensor Functions in Solid Mechanics. Applications of Tensor Functions in Solid Mechanics, Courses and Lectures of CISM, vol. 292 (1987), Springer), 13-30 · Zbl 0657.73001
[6] Calvo, B.; Peña, E.; Martínez, M. A.; Doblaré, M. A., An uncoupled directional damage model for fibered biological soft tissues, Int. J. Numer. Methods Engrg., 69, 2036-2057 (2007) · Zbl 1194.74197
[7] Castaneda-Zuniga, W., Pathophysiology of transluminal angioplasty, (Meyer, J.; Erberl, R.; Rupprecht, H. J., Improvement of Myocardial Perfusion (1985), Martinus Nijhof: Martinus Nijhof Boston), 138-141
[8] Castaneda-Zuniga, W. R.; Formanek, A.; Tadavarthy, M.; Vlodaver, Z.; Edwards, J. E.; Zollikofer, C.; Amplatz, K., The mechanism of balloon angioplasty, Radiology, 135, 565-571 (1980)
[9] Chuong, C. J.; Fung, Y. C., Three-dimensional stress distribution in arteries, J. Biomech. Engrg., 105, 268-274 (1983)
[10] Dorfmann, A.; Ogden, R. W., A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber, Int. J. Solids Struct., 40, 2699-2714 (2003) · Zbl 1051.74521
[11] Dorfmann, A.; Ogden, R. W., A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber, Int. J. Solids Struct., 41, 1855-1878 (2004) · Zbl 1074.74021
[12] Ehret, A.; Itskov, M., A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues, J. Mech. Phys. Solids, 42, 8853-9963 (2007)
[13] Ehret, A.; Itskov, M., Modeling of anisotropic softening phenomena: Application to soft biological tissues, Int. J. Plast., 25, 901-919 (2009) · Zbl 1160.74010
[14] Fung, Y. C., Biomechanics - Mechanical Properties of Living Tissues (1993), Springer: Springer New York, Berlin, Heidelberg
[15] Fung, Y. C.; Fronek, K.; Patitucci, P., Pseudoelasticity of arteries and the choice of its mathematical expression, Amer. J. Physiol., 237, H620-H631 (1979)
[16] Gasser, T. C.; Holzapfel, G. A., Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions, Comput. Mech., 40, 47-60 (2007) · Zbl 1175.74055
[17] Gasser, T. C.; Ogden, R. W.; Holzapfel, G. A., Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interf., 3, 15-35 (2006)
[18] Govindjee, S.; Simo, J. C., A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect, J. Mech. Phys. Solids, 39, 87-112 (1991) · Zbl 0734.73066
[19] Gundiah, N.; Ratcliffe, M. B.; Pruitt, L. A., Determination of strain energy function for arterial elastin: experiments using histology and mechanical tests, J. Biomech., 40, 586-594 (2007)
[20] Gupta, H. S., Nanoscale deformation mechanisms in collagen, (Fratzl, P., Collagen: Structure and Mechanics (2008), Springer), 155-173
[21] Helfenstein, J.; Jabareen, M.; Mazza, E.; Govindjee, S., On non-physical response in models for fiber-reinforced hyperelastic materials, Int. J. Solids Struct., 47, 2056-2061 (2010) · Zbl 1194.74042
[22] Holzapfel, G. A., Nonlinear Solid Mechanics. Nonlinear Solid Mechanics, A Continuum Approach for Engineering (2000), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0980.74001
[23] Holzapfel, G. A.; Gasser, T. C., Computational stress-deformation analysis of arterial walls including high-pressure response, Int. J. Cardiol., 116, 78-85 (2007)
[24] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61, 1-48 (2000) · Zbl 1023.74033
[25] (Holzapfel, G. A.; Ogden, R. W., Mechanics of Biological Tissue (2006), Springer-Verlag: Springer-Verlag Heidelberg)
[26] Holzapfel, G. A.; Schulze-Bauer, C. A.J.; Stadler, M., Mechanics of angioplasty: wall, balloon and stent, (Casey, J.; Bao, G., Mechanics in Biology, AMD-vol. 242/BED-vol. 46 (2000), The American Society of Mechanical Engineers (ASME): The American Society of Mechanical Engineers (ASME) New York), 141-156
[27] Holzapfel, G. A.; Sommer, G.; Gasser, C. T.; Regitnig, P., Determination of the layerspecific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling, Amer. J. Physiol. - Heart Circul. Physiol., 289, H2048-H2058 (2005)
[28] Holzapfel, G. A.; Sommer, G.; Regitnig, P., Anisotropic mechanical properties of tissue components in human atherosclerotic plaques, J. Biomech. Engrg., 126, 657-665 (2004)
[29] Humphrey, J. D., Cardiovascular Solid Mechanics. Cardiovascular Solid Mechanics, Cells, Tissues, and Organs (2002), Springer-Verlag: Springer-Verlag New York
[30] Itskov, M.; Aksel, A., A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int. J. Solids Struct., 41, 3833-3848 (2004) · Zbl 1079.74516
[31] Liu, S. Q., Biomechanical basis of vascular tissue engineering, Crit. Rev. Biomed. Engrg., 27, 75-148 (1999)
[32] Maltzahn, von W.-W.; Warriyar, R. G.; Keitzer, W., Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries, J. Biomech., 17, 839-847 (1984)
[33] Marckmann, G.; Verron, E.; Gornet, L.; Chagnon, G.; Charrier, P.; Fort, P., A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, 50, 2011-2028 (2002) · Zbl 1041.74011
[34] Miehe, C., Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur. J. Mech., A/Solids, 14, 697-720 (1995) · Zbl 0837.73054
[35] Miehe, C.; Keck, J., Superimposed finite elasticviscoelasticplastoelastic stress response with damage in filled rubbery polymers, Experiments, modelling and algorithmic implementation, J. Mech. Phys. Solids, 48, 323-365 (2000) · Zbl 0998.74014
[36] Montes, G. S., Structural biology of the fibres of the collagenous and elastic systems, Cell Biol. Int., 20, 15-27 (1996)
[37] Natali, A. N.; Pavan, P. G.; Carniel, E. L.; Dorow, C., A transversally isotropic elasto-damage constitutive model for the periodontal ligament, Comput. Methods Biomech. Biomed. Engrg., 6, 329-336 (2003)
[38] Ogden, R. W.; Roxburgh, D. G., An energy-based model of the Mullins effect, (Dorfmann, A.; Muhr, A., Proceedings of the First European Conference on Constitutive Models (1999), A.A. Balkema: A.A. Balkema Rotterdam, Brookfield), 23-28 · Zbl 0971.74011
[39] Ogden, R. W.; Roxburgh, D. G., A pseudo-elastic model for the Mullins effect in filled rubber, Proc. R. Soc. London, Ser. A: Math., Phys. Engrg. Sci., 455, 2861-2877 (1999) · Zbl 0971.74011
[40] Oktay, H. S.; Kang, T.; Humphrey, J. D.; Bishop, G. G., Changes in the mechanical behavior of arteries following balloon angioplasty, (Spilker, R. L.; Friedman, M. H., ASME 1991 Biomechanics Symposium, AMD, vol. 120 (1991), The American Society of Mechanical Engineers)
[41] Peña, E.; Peña, J. A.; Doblaré, M., On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models, Int. J. Solids Struct., 46, 1727-1735 (2009) · Zbl 1217.74083
[42] Roach, M. R.; Burton, A. C., The reason for the shape of the distensibility curves of arteries, Canadian J. Biochem. Physiol., 35, 681-690 (1957)
[43] Rodríguez, J. F.; Cacho, F.; Bea, J. A.; Doblaré, M., A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue, J. Mech. Phys. Solids, 54, 864-886 (2006) · Zbl 1120.74322
[44] Schröder, J.; Balzani, D.; Gross, D., Aspects of modeling and computer simulation of soft tissues: applications to arterial walls, Materialwiss. Werkst., 36, 795-801 (2005)
[45] Schröder, J.; Neff, P., Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, Int. J. Solids Struct., 40, 401-445 (2003) · Zbl 1033.74005
[46] Schulze-Bauer, C. A.J.; Regitnig, P.; Holzapfel, G. A., Mechanics of the human femoral adventitia including the high-pressure response, Amer. J. Physiol. - Heart Circul. Physiol., 282, H2427-H2440 (2002)
[47] Simo, J. C., On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects, Computer. Methods Appl. Mech. Engrg., 60, 153-173 (1987) · Zbl 0588.73082
[48] Sommer, G.; Regitnig, P.; Költringer, L.; Holzapfel, G. A., Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supra-physiological loadings, Amer. J. Physiol. Heart Circ. Physiol., 298, H898-H912 (2010)
[49] Spencer, A. J.M., Part III. Theory of Invariants, (Eringen, A. C., Continuum Physics, volume I - Mathematics (1971), Academic Press: Academic Press New York), 239-353
[50] Spencer, A. J.M., Isotropic polynomial invariants and tensor functions, (Boehler, J. P., Applications of Tensor Functions in Solid Mechanics. Applications of Tensor Functions in Solid Mechanics, Courses and Lectures of CISM, vol. 282 (1987), Springer), 141-169 · Zbl 0657.73001
[51] Vaishnav, R. N.; Young, J. T.; Patel, D. J., Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment, Circul. Res., 32, 577-583 (1973)
[52] Watton, P. N.; Ventikos, Y.; Holzapfel, G. A., Modelling the mechanical response of elastin for arterial tissue, J. Biomech., 42, 1320-1325 (2009)
[53] H. Weisbecker, D.M. Pierce, P. Regitnig, G.A. Holzapfel. Layer-specific damage experiments and modeling for human thoracic and abdominal aortas with non-atherosclerotic intimal thickening, submitted for publication.; H. Weisbecker, D.M. Pierce, P. Regitnig, G.A. Holzapfel. Layer-specific damage experiments and modeling for human thoracic and abdominal aortas with non-atherosclerotic intimal thickening, submitted for publication.
[54] Weiss, J. A.; Maker, B. N.; Govindjee, S., Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. Methods Appl. Mech. Engrg., 135, 107-128 (1996) · Zbl 0893.73071
[55] Xie, J.; Zhou, J.; Fung, Y. C., Bending of blood vessel wall: stress-strain laws of the intima-media and adventitia layers, J. Biomech. Engrg., 117, 136-145 (1995)
[56] Yu, Q.; Zhou, J.; Fung, Y. C., Neutral axis location in bending and young’s modulus of different layers of arterial wall, Amer. J. Physiol. - Heart Circul. Physiol., 265, H52-H60 (1993)
[57] Zheng, Q. S.; Spencer, A. J.M., Tensors which characterize anisotropies, Int. J. Engrg. Sci., 31, 679-693 (1993) · Zbl 0772.73009
[58] Zollikofer, C. L.; Salomonowitz, E.; Sibley, R.; Chain, J.; Bruehlmann, W. F.; Castaneda-Zuniga, W. R.; Amplatz, K., Transluminal angioplasty evaluated by electron microscopy, Radiology, 153, 369-374 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.