×

A generalization of the original Jordan-von Neumann theorem. (English) Zbl 1243.47010

Motivated by the original form of the well-known Jordan-von Neumann theorem [P. Jordan and J. von Neumann, Ann. of Math. (2) 36, 719–723 (1935; Zbl 0012.30702, JFM 61.0435.05)], the author explores extensions in the setting of sesquilinear forms on modules over *-algebras, in particular, the problem of representability of quadratic functionals. One of the main results is Corollary 4.3, stating that a mapping \(Q\), defined on a unitary right \(A\)-module \(M\) over a unital semiprime complex *-algebra \(A\) without nonzero central ideals with values in a unitary \(A\)-bimodule \(B\) satisfying some mild algebraic conditions that fulfils the parallelogram law and the homogeneity condition \(Q(fa)=a^*Q(f)a\) for all \(f\in M\) and all \(a\in A\) which are hermitian or skew-hermitian, always is an \(A\)-quadratic functional, that is, \(Q(f)=S(f,f)\), where the \(A\)-sesquilinear form \(S: M\times M\to B\) is given by the canonical polarisation identity.

MSC:

47A07 Forms (bilinear, sesquilinear, multilinear)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
39B52 Functional equations for functions with more general domains and/or ranges
46C15 Characterizations of Hilbert spaces
Full Text: DOI

References:

[1] M. Brešar, Commuting maps: a survey, Taiwanese J. Math., 8 (2004), 361–397. · Zbl 1078.16032
[2] M. Brešar, Jordan derivations revisited, Math. Proc. Camb. Phil. Soc., 139 (2005), 411–425. · Zbl 1092.16020 · doi:10.1017/S0305004105008601
[3] D. Ilišević, Quadratic functionals on modules over rings, Studia Sci. Math. Hungar., 42 (2005), 95–105.
[4] D. Ilišević, Quadratic functionals on modules over complex Banach algebras with an approximate identity, Studia Math., 171 (2005), 103–123. · Zbl 1088.46028 · doi:10.4064/sm171-2-1
[5] D. Ilišević, On quadratic functionals: from rings to a class of Banach algebras, in: Functional Analysis VIII, Proceedings of the Postgraduate School and Conference held at the Inter-University Centre (Dubrovnik, Croatia, 15–22 June 2003), University of Aarhus, Department of Mathematical Sciences, Aarhus, pp. 110–115.
[6] P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math., 36 (1935), 719–723. · JFM 61.0435.05 · doi:10.2307/1968653
[7] S. Kurepa, The Cauchy functional equation and scalar product in vector spaces, Glasnik Mat.-Fiz. i Astr., 19 (1964), 23–36. · Zbl 0134.32601
[8] S. Kurepa, Quadratic and sesquilinear functionals, Glasnik Mat.-Fiz. i Astr., 20 (1965), 79–92. · Zbl 0147.35202
[9] S. Kurepa, Quadratic and sesquilinear forms. Contributions to characterizations of inner product spaces, in: Functional Analysis II (Dubrovnik, 1985), Lecture Notes in Math., 1242, Springer (Berlin, 1987), pp. 43–76.
[10] P. Šemrl, On quadratic and sesquilinear functionals, Aequationes Math., 31 (1986), 184–190. · Zbl 0615.46043 · doi:10.1007/BF02188187
[11] P. Šemrl, On quadratic functionals, Bull. Austral. Math. Soc., 37 (1988), 27–28. · Zbl 0625.46058 · doi:10.1017/S0004972700004111
[12] P. Šemrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., 119 (1993), 1105–1113. · Zbl 0803.15024
[13] J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc., 100 (1987), 133–136. · Zbl 0623.46021 · doi:10.1090/S0002-9939-1987-0883415-0
[14] B. Zalar, Jordan–von Neumann theorem for Saworotnow’s generalized Hilbert space, Acta Math. Hungar., 69 (1995), 301–325. · Zbl 0888.46038 · doi:10.1007/BF01874578
[15] B. Zalar, Jordan derivation pairs and quadratic functionals on modules over rings, Aequationes Math., 54 (1997), 31–43. · Zbl 0881.39019 · doi:10.1007/BF02755444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.