×

Robust control of flexible-joint robots using voltage control strategy. (English) Zbl 1242.93082

Summary: So far, control of robot manipulators has frequently been developed based on the torque-control strategy. However, two drawbacks may occur. First, torque-control laws are inherently involved in complexity of the manipulator dynamics characterized by nonlinearity, largeness of model, coupling, uncertainty and joint flexibility. Second, actuator dynamics may be excluded from the controller design. The novelty of this paper is the use of voltage control strategy to develop robust tracking control of electrically driven flexible-joint robot manipulators. In addition, a novel method of uncertainty estimation is introduced to obtain the control law. The proposed control approach has important advantages over the torque-control approaches due to being free of manipulator dynamics. It is computationally simple, decoupled, well-behaved and has a fast response. The control design includes two interior loops; the inner loop controls the motor position and the outer loop controls the joint position. Stability analysis is presented and performance of the control system is evaluated. Effectiveness of the proposed control approach is demonstrated by simulations using a three-joint articulated flexible-joint robot driven by permanent magnet dc motors.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93B35 Sensitivity (robustness)
93D21 Adaptive or robust stabilization
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI

References:

[1] Sweet, L.M., Good, M.C.: Redefinition of the robot motion control problem. IEEE Control Syst. Mag. 5(3), 18–24 (1985) · doi:10.1109/MCS.1985.1104955
[2] Brogliato, B., Ortega, R., Lozano, R.: Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica 31(7), 41–956 (1995) · Zbl 0825.93335 · doi:10.1016/0005-1098(94)00067-S
[3] Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36(10), 1208–1213 (1991) · doi:10.1109/9.90238
[4] Luca, A.D., Isidori, A., Nicolo, F.: Control of robot arm with elastic joints via nonlinear dynamic feedback. In: The 24th Conf. Decision Contr., Ft. Lauderdale, FL, pp. 1671–1679 (1985)
[5] Spong, M.W., Khorasani, K., Kokotovic, P.V.: An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. RA-3, 291–300 (1987) · doi:10.1109/JRA.1987.1087102
[6] Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots. In: The IFAC Symp. Robot Contr., Barcelona, Spain (1985)
[7] Spong, M.W.: Modeling and control of elastic joint robots. ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987) · Zbl 0656.93052 · doi:10.1115/1.3143860
[8] Wilson, G.A.: Robust tracking of elastic joint manipulators using sliding mode control. Trans. Inst. Meas. Control 16(2), 99–107 (1994). doi: 10.1177/014233129401600206 · doi:10.1177/014233129401600206
[9] Spong, M.W.: Adaptive control of flexible joint manipulators: comments on two papers. Automatica 31(4), 585–590 (1985) · Zbl 0925.93624 · doi:10.1016/0005-1098(95)98487-Q
[10] Chang, L.L., Chuan, C.C.: Rigid model-based fuzzy control of flexible-joint manipulators. J. Intell. Robot. Syst. 13(2), 107–126 (1995). doi: 10.1007/BF01254847 · doi:10.1007/BF01254847
[11] Wang, D.: A simple iterative learning controller for manipulators with flexible joints. Automatica 31(9), 1341–1344 (1995) · Zbl 0831.93046 · doi:10.1016/0005-1098(95)00039-Y
[12] Zeman, V., Patel, R.V., Khorasani, K.: Control of a flexible-joint robot using neural networks. IEEE Trans. Control Syst. Technol. 5(4), 453–462 (1997). doi: 10.1109/87.595927 · doi:10.1109/87.595927
[13] Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robot. Autom. 24(2), 416–429 (2008). doi: 10.1109/TRO.2008.915438 · doi:10.1109/TRO.2008.915438
[14] Talole, E., Kolhe, P., Phadke, B.: Extended state observer based control of flexible joint system with experimental validation. IEEE Trans. Ind. Electron. (2009). doi: 10.1109/TIE.2009.2029528
[15] Youcef-Toumi, K., Shortlidge, C.: Control of robot manipulators using time delay. In: IEEE Int. Conf. on Robotics and Automation, Sacramento, CA (1991)
[16] Talole, S.E., Phadke, S.B.: Model following sliding mode control based on uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 130, 1–5 (2008) · Zbl 1178.93039
[17] Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots. Presented at the IFAC Symp. Robot Contr., Barcelona, Spain, 1985
[18] Tomei, P.: An observer for flexible joint robots. IEEE Trans. Autom. Control 35(6), 739–743 (1990). doi: 10.1109/9.53558 · Zbl 0800.93836 · doi:10.1109/9.53558
[19] De Luca, A., Lanari, L.: Robots with elastic joints are linearizable via dynamic feedback. In: 34th IEEE Conf. on Decision and Control, New Orleans, LA (1995)
[20] Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press, New York (1996) · Zbl 0918.93030
[21] Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11, 24–30 (1991) · Zbl 0800.93821 · doi:10.1109/37.67672
[22] Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003) · doi:10.1109/TRA.2003.814517
[23] Fateh, M.M., Soltanpour, M.R.: Robust task-space control of robot manipulators under imperfect transformation of control space. Int. J. Innov. Comput. Inf. Control 5(11A), 3949–3960 (2009)
[24] Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. 61(4), 655–666 (2010). doi: 10.1007/s11071-010-9677-7 · Zbl 1204.93087 · doi:10.1007/s11071-010-9677-7
[25] Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5), 702–712 (2008)
[26] Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control 6(6), 2691–2700 (2010)
[27] Fateh, M.M.: Robust impedance control of a hydraulic suspension system. Int. J. Robust Nonlinear Control 20(8), 858–872 (2010). doi: 10.1002/rnc.1473 · Zbl 1298.93132
[28] Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamics systems. IEEE Trans. Autom. Control 26, 1139–1144 (1981) · Zbl 0473.93056 · doi:10.1109/TAC.1981.1102785
[29] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Networks, Perth, WA, Australia (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.