×

Fast stray field computation on tensor grids. (English) Zbl 1242.78034

Summary: A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with \(N^{4/3}\) for \(N\) computational cells used and with \(N^{2/3}\) (sublinear) when magnetization is given in canonical tensor format. In the final section, we confirm our theoretical results concerning computing times and accuracy by means of numerical examples.

MSC:

78M12 Finite volume methods, finite integration techniques applied to problems in optics and electromagnetic theory
78A30 Electro- and magnetostatics
65D30 Numerical integration
15A72 Vector and tensor algebra, theory of invariants

References:

[1] Kronmueller, H., Handbook of Magnetism and Advanced Magnetic Materials (2007), John Wiley & Sons: John Wiley & Sons Hoboken New Jersey
[2] Blue, J. L.; Scheinfein, M. R., Using multipoles decreases computation time for magnetostatic self-energy, IEEE Transactions on Magnetics, 27, 4778-4780 (1991)
[3] Long, H.; Ong, E.; Liu, Z.; Li, E., Fast fourier transform on multipoles for rapid calculation of magnetostatic fields, IEEE Transactions on Magnetics, 42, 295-300 (2006)
[4] Livshitz, B.; Boag, A.; Bertram, H. N.; Lomakin, V., Nonuniform grid algorithm for fast calculation of magnetostatic interactions in micromagnetics, Journal of Applied Physics, 105 (2009)
[5] Popovic, N.; Praetorius, D., Applications of \(H\)-matrix techniques in micromagnetics, Computing, 74, 177-204 (2004) · Zbl 1070.78011
[6] Goncharov, A.; Hrkac, G.; Dean, J.; Schrefl, T., Kronecker product approximation of demagnetizing tensors for micromagnetics, Journal of Computational Physics, 229, 2544-2549 (2010) · Zbl 1184.78009
[7] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Review, 51, 455-500 (2009) · Zbl 1173.65029
[8] de Silva, V.; Lim, L., Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM Journal on Matrix Analysis and Applications, 30, 1084-1127 (2008) · Zbl 1167.14038
[9] Hackbusch, W.; Khoromskij, B. N., Low-rank kronecker-product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions, Computing, 76, 177-202 (2006) · Zbl 1087.65049
[10] Oseledets, I. V.; Savostyanov, D. V.; Tyrtyshnikov, E. E., Linear algebra for tensor problems, Computing, 85, 169-188 (2009) · Zbl 1172.65018
[11] Bader, B. W.; Kolda, T. G., Algorithm 862: MATLAB tensor classes for fast algorithm prototyping, ACM Transactions on Mathematical Software (TOMS), 32, 635-653 (2006) · Zbl 1230.65054
[12] Bader, B. W.; Kolda, T. G., Efficient MATLAB computations with sparse and factored tensors, SIAM Journal on Scientific Computing, 30, 205 (2008) · Zbl 1159.65323
[13] J. Balani, L. Grasedyck, A projection method to solve linear systems in tensor format, Preprint 46 DFG-SPP 1324, 2010.; J. Balani, L. Grasedyck, A projection method to solve linear systems in tensor format, Preprint 46 DFG-SPP 1324, 2010.
[14] Jackson, J. D., Classical Electrodynamics (1998), Wiley · Zbl 0114.42903
[15] Jusélius, J.; Sundholm, D., Parallel implementation of a direct method for calculating electrostatic potentials, The Journal of Chemical Physics, 126, 094101 (2007)
[16] Beatson, R.; Greengard, L., A short course on fast multipole methods, Wavelets, Multilevel Methods and Elliptic PDEs, 1-37 (1997) · Zbl 0882.65106
[17] Cowburn, R. P.; Welland, M. E., Micromagnetics of the single-domain state of square ferromagnetic nanostructures, Physical Review B, 58 (1998)
[18] <http://www.suessco.com/simulations/>; <http://www.suessco.com/simulations/>
[19] Feldtkeller, E.; Thomas, H., Struktur und energie von blochlinien in duennen ferromagnetischen schichten, Physik der Kondensierten Materie, 4, 8-14 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.