×

A stabilized meshfree reproducing kernel-based method for convection-diffusion problems. (English) Zbl 1242.76232

Summary: In this paper, we develop a meshfree particle-based method for convection-diffusion problems. Discretization is performed by using piecewise constant kernels. The stabilized scheme is based on a new upwind kernel. We show that accurate and stable scheme can be obtained by using purpose-built kernels. It also shown that under some conditions the classical optimal finite difference scheme can be derived by the new method. Several numerical tests validate the method.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76R99 Diffusion and convection
Full Text: DOI

References:

[1] Fatone, Finite-difference schemes for transport-dominated equations using special collocation nodes, Numerical Methods for Partial Differential Equations 21 (4) pp 649– (2005) · Zbl 1079.65105 · doi:10.1002/num.20056
[2] Fortin, Mixed and hybrid finite element methods for convection-diffusion equations and their relationships with finite volume Part 1, Calcolo 42 (1) pp 1– (2005) · Zbl 1108.65116 · doi:10.1007/s10092-005-0090-4
[3] Farhloul, A mixed-hybrid finite element method for convection-diffusion problems, Applied Mathematics and Computation 171 (2) pp 1037– (2005) · Zbl 1090.65130 · doi:10.1016/j.amc.2005.01.101
[4] Serghini Mounim, A new mixed-hybrid finite element method for convection-diffusion problems, International Journal of Pure and Applied Mathematics 14 (1) pp 119– (2004) · Zbl 1090.65130
[5] Serghini Mounim, A space-time mixed-hybrid finite element method for the damped wave equation, Numerical Methods for Partial Differential Equations 24 (2) pp 368– (2008) · Zbl 1136.65091 · doi:10.1002/num.20264
[6] Ata, A stabilized SPH method for inviscid shallow water Flows, International Journal for Numerical Methods in Fluids 47 pp 139– (2005) · Zbl 1065.76162 · doi:10.1002/fld.801
[7] Gingold, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Royal Astronomical Society 181 pp 375– (1977) · Zbl 0421.76032 · doi:10.1093/mnras/181.3.375
[8] Lucy, A numerical approach to the testing of the fission hypothesis, Astronomical Journal 82 pp 1013– (1977) · doi:10.1086/112164
[9] Liu, Smoothed Particle Hydrodynamics, a Mesh-free Particle Method (2003) · Zbl 1046.76001 · doi:10.1142/9789812564405
[10] Brezis, Analyse Fonctionnelle: Théorie et Applications (1983)
[11] Belley, Non-smooth kernels for meshfree methods in fluid dynamics, Computers and Mathematics with Applications 58 (6) pp 1253– (2009) · Zbl 1189.76381 · doi:10.1016/j.camwa.2009.06.002
[12] Zaoui EM Nouvelle méthode pour approximer le gradient et le laplacien d’une fonction réelle 2009
[13] Il’In, A difference scheme for a differential equation with a small parameter multiplying the highest derivative, Matematičeskije Zametki 6 (2) pp 237– (1969)
[14] Christie, Finite element methods for second order differential equations with significant first derivatives, International Journal for Numerical Methods in Engineering 10 pp 1389– (1976) · Zbl 0342.65065 · doi:10.1002/nme.1620100617
[15] Hughes, Multiscale phenomena: Green’s functions,the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering 127 pp 387– (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[16] Hughes, The variational multiscale method: a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering 166 (1-2) pp 3– (1998) · Zbl 1017.65525 · doi:10.1016/S0045-7825(98)00079-6
[17] Allen, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder, The Quarterly Journal of Mechanics and Applied Mathematics 8 pp 129– (1955) · Zbl 0064.19802 · doi:10.1093/qjmam/8.2.129
[18] Brooks, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 32 pp 199– (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[19] Hughes, A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle, Computer Methods in Applied Mechanics and Engineering 50 pp 181– (1985) · Zbl 0553.76075 · doi:10.1016/0045-7825(85)90089-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.