×

On the well-posedness of the stochastic Allen-Cahn equation in two dimensions. (English) Zbl 1242.65013

Summary: White noise-driven nonlinear stochastic partial differential equations (SPDEs) of parabolic type are frequently used to model physical systems in space dimensions \(d = 1, 2, 3\). Whereas existence and uniqueness of weak solutions to these equations are well established in one dimension, the situation is different for \(d \geqslant 2\). Despite their popularity in the applied sciences, higher dimensional versions of these SPDE models are generally assumed to be ill-posed by the mathematics community. We study this discrepancy on the specific example of the two dimensional Allen - Cahn equation driven by additive white noise. Since it is unclear how to define the notion of a weak solution to this equation, we regularize the noise and introduce a family of approximations. Based on heuristic arguments and numerical experiments, we conjecture that these approximations exhibit divergent behavior in the continuum limit. The results strongly suggest that shrinking the mesh size in simulations of the two-dimensional white noise-driven Allen - Cahn equation does not lead to the recovery of a physically meaningful limit.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
35Q35 PDEs in connection with fluid mechanics

References:

[1] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 6, 1085-1095 (1979)
[2] Benzi, R.; Sbragaglia, M.; Bernaschi, M.; Succi, S., Phase-field model of long-time glasslike relaxation in binary fluid mixtures, Phys. Rev. Lett., 106, 16, 164501 (2011)
[3] Brassesco, S.; De Masi, A.; Presutti, E., Brownian fluctuations of the interface in the \(d=1\) Ginzburg-Landau equation with noise, Ann. Inst. Henri Poincaré (B), 31, 1, 81-118 (1995) · Zbl 0822.35158
[4] Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics (2000), Cambridge University Press
[5] Chan, T., Scaling limits of Wick ordered KPZ equation, Commun. Math. Phys., 209, 3, 671-690 (2000) · Zbl 0956.60077
[6] Da Prato, G.; Debussche, A., Stochastic Cahn-Hilliard equation, Nonlinear Anal. Theor. Methods Appl., 26, 2, 241-263 (1996) · Zbl 0838.60056
[7] Da Prato, G.; Debussche, A., Strong solutions to the stochastic quantization equations, Ann. Probab., 31, 4, 1900-1916 (2003) · Zbl 1071.81070
[8] G. Da Prato, L. Tubaro, Wick powers in stochastic PDEs: an introduction, Technical Report UTM 711, Matematica, University of Trento, March 2007.; G. Da Prato, L. Tubaro, Wick powers in stochastic PDEs: an introduction, Technical Report UTM 711, Matematica, University of Trento, March 2007.
[9] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of mathematics and its applications., vol. 45 (1992), Cambridge University Press · Zbl 0761.60052
[10] Dautray, R.; Lions, J. L.; Sneddon, I. N., Mathematical Analysis and Numerical Methods for Science and Technology: Functional and Variational Methods, vol. 2 (2000), Springer · Zbl 0944.47001
[11] Drolet, F.; Elder, K. R.; Grant, M.; Kosterlitz, J. M., Phase-field modeling of eutectic growth, Phys. Rev. E, 61, 6, 6705-6720 (2000)
[12] Elder, K. R.; Drolet, F.; Kosterlitz, J. M.; Grant, M., Stochastic eutectic growth, Phys. Rev. Lett., 72, 5, 677-680 (1994)
[13] M. Erbar, Low noise limit for the invariant measure of a multi-dimensional stochastic Allen-Cahn equation, 2010. <arXiv:1012.2718>; M. Erbar, Low noise limit for the invariant measure of a multi-dimensional stochastic Allen-Cahn equation, 2010. <arXiv:1012.2718>
[14] Evans, L. C.; Soner, H. M.; Souganidis, P. E., Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45, 9, 1097-1123 (1992) · Zbl 0801.35045
[15] Faris, W. G.; Jona-Lasinio, G., Large fluctuations for a nonlinear heat equation with noise, J. Phys. A: Math. Gen., 15, 10, 3025-3055 (1982) · Zbl 0496.60060
[16] Gardiner, C. W., Stochastic methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics, vol. 13 (2009), Springer · Zbl 1181.60001
[17] Giada, L.; Giacometti, A.; Rossi, M., Pseudospectral method for the Kardar-Parisi-Zhang equation, Phys. Rev. E, 65, 3, 36134 (2002)
[18] Goldenfeld, N., Lectures on Phase Transitions and the Renormalization group, Frontiers in Physics, vol. 85 (1992), Addison-Wesley, Advanced Book Program
[19] Gránásy, L.; Börzsönyi, T.; Pusztai, T., Nucleation and bulk crystallization in binary phase field theory, Phys. Rev. Lett., 88, 20, 206105 (2002)
[20] Granasy, L.; Pusztai, T.; Börzsönyi, T.; Warren, J. A.; Douglas, J. F., A general mechanism of polycrystalline growth, Nat. Mater., 3, 9, 645-650 (2004)
[21] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II, Potential Anal., 11, 1, 1-37 (1999) · Zbl 0944.60074
[22] Gyöngy, I.; Nualart, D., Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise, Stoch. Proc. Appl., 58, 1, 57-72 (1995) · Zbl 0832.60068
[23] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 3, 525-546 (2001) · Zbl 0979.65007
[24] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 3, 435-479 (1977)
[25] Ibanes, M.; Garcia-Ojalvo, J.; Toral, R.; Sancho, J. M., Dynamics and scaling of noise-induced domain growth, Eur. Phys. J. B, 18, 4, 663-673 (2000)
[26] Jentzen, A., Pathwise numerical approximations of spdes with additive noise under non-global lipschitz coefficients, Potential Anal., 31, 4, 375-404 (2009) · Zbl 1176.60051
[27] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 9, 889-892 (1986) · Zbl 1101.82329
[28] Kloeden, P. E.; Lord, G. J.; Neuenkirch, A.; Shardlow, T., The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds, J. Comput. Appl. Math., 235, 5, 1245-1260 (2010) · Zbl 1208.65017
[29] Kohn, R. V.; Otto, F.; Reznikoff, M. G.; Vanden-Eijnden, E., Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation, Commun. Pure Appl. Math., 60, 3, 393-438 (2007) · Zbl 1154.35021
[30] Kovács, M.; Larsson, S.; Lindgren, F., Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise, Numer. Algorithms, 53, 2, 309-320 (2010) · Zbl 1184.65014
[31] Lai, Z. W.; Das Sarma, S., Kinetic growth with surface relaxation: Continuum versus atomistic models, Phys. Rev. Lett., 66, 18, 2348-2351 (1991)
[32] Lythe, G.; Habib, S., Stochastic PDEs: convergence to the continuum?, Comput. Phys. Commun., 142, 1-3, 29-35 (2001) · Zbl 0991.65007
[33] Ma, K.; Jiang, J.; Yang, C. B., Scaling behavior of roughness in the two-dimensional Kardar-Parisi-Zhang growth, Physica A, 378, 2, 194-200 (2007)
[34] Ni, Y.; Khachaturyan, A. G., From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition, Nat. Mater., 8, 5, 410-414 (2009)
[35] Oguz, E.; Chakrabarti, A.; Toral, R.; Gunton, J. D., Domain growth in the two-dimensional time-dependent Ginzburg-Landau model in the presence of a random magnetic field, Phys. Rev. B, 42, 1, 704-708 (1990)
[36] Patterson Jr, G. S.; Orszag, S. A., Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions, Phys. Fluids, 14, 2538-2541 (1971) · Zbl 0225.76033
[37] Peszat, S.; Zabczyk, J., Stochastic Partial Differential Equations with Lévy noise: An Evolution Equation Approach. Encyclopedia of Mathematics and its Applications (2007), Cambridge University Press · Zbl 1205.60122
[38] Rao, M.; Chakrabarti, A., Kinetics of domain growth in a random-field model in three dimensions, Phys. Rev. Lett., 71, 21, 3501-3504 (1993)
[39] M.D. Ryser, H. Weber, M. Hairer. 2D stochastic Allen-Cahn: convergence to the zero-distribution, in preparation.; M.D. Ryser, H. Weber, M. Hairer. 2D stochastic Allen-Cahn: convergence to the zero-distribution, in preparation. · Zbl 1245.60063
[40] Schwartz, L., Sur impossibilité de la multiplication des distributions, Sci. Paris, 239, 847-848 (1954) · Zbl 0056.10602
[41] Shardlow, T., Numerical methods for stochastic parabolic PDEs, Numer. Func. Anal. Optim., 20, 1-2, 121-145 (1999) · Zbl 0919.65100
[42] Shardlow, T., Stochastic perturbations of the Allen-Cahn equation, Electron. J. Diff. Equ., 2000, 47, 1-19 (2000) · Zbl 0959.60047
[43] Slutsker, J.; Artemev, A.; Roytburd, A., Phase-field modeling of domain structure of confined nanoferroelectrics, Phys. Rev. Lett., 100, 8, 87602 (2008)
[44] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, 1, 319-328 (1977)
[45] J. Walsh, An introduction to stochastic partial differential equations, École d’Été de Probabilités de Saint Flour XIV-1984, 1986, pp. 265-439.; J. Walsh, An introduction to stochastic partial differential equations, École d’Été de Probabilités de Saint Flour XIV-1984, 1986, pp. 265-439.
[46] Walsh, J. B., Finite element methods for parabolic stochastic PDEs, Potential Anal., 23, 1, 1-43 (2005) · Zbl 1065.60082
[47] Watson, G. N., A Treatise on the Theory of Bessel Functions (1995), Cambridge Mathematical Library, Cambridge University Press · Zbl 0849.33001
[48] Wio, H. S.; Escudero, C.; Revelli, J. A.; Deza, R. R.; de la Lama, M. S., Recent developments on the Kardar-Parisi-Zhang surface-growth equation, Philos. T. Roy. Soc. A, 369, 1935, 396-411 (2011) · Zbl 1211.82039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.