×

A geometric construction of tight multivariate Gabor frames with compactly supported smooth windows. (English) Zbl 1242.42028

Han and Wang have constructed Gabor systems with windows that are characteristic functions of fundamental domains for pairs of lattices. The authors indicate the main drawback of that approach: the constructed functions are discontinuous and may not even decay at infinity. In order to overcome this difficulty, one has to consider window functions in \(C_c(\mathbb R^d)\) whose support extends beyond the fundamental domain of lattice in question.
Building on the work of Han and Wang the authors provide in Theorem 4.2 sufficient conditions for obtaining Gabor frames with smooth and compactly supported window functions.
As an application, the authors show that one can construct such window functions for lattices which have star-shaped fundamental domains.
In the concluding section the authors provide several concrete examples which illustrate their technique in the case \(d=2\).

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl. 12(3), 307–344 (2006) · Zbl 1097.42022 · doi:10.1007/s00041-005-5035-4
[2] Bekka, B.: Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004) · Zbl 1064.46058 · doi:10.1007/s00041-004-3036-3
[3] Benedetto, J.J., Heil, C., Walnut, D.F.: Gabor systems and the Balian-Low theorem. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 85–122. Birkhäuser, Boston (1998) · Zbl 0890.42007
[4] Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2003) · Zbl 1017.42022
[5] Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 961–1005 (1990) · Zbl 0738.94004
[6] Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. SIAM, Philadelphia (1992) · Zbl 0776.42018
[7] de Gosson, M.: Symplectic Geometry and Quantum Mechanics. Operator Theory: Advances and Applications, vol. 166. Birkhäuser, Boston (2006) · Zbl 1098.81004
[8] Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997) · Zbl 0887.46017 · doi:10.1006/jfan.1996.3078
[9] Feichtinger, H.G., Kaiblinger, N.: Varying the time-frequency lattice of Gabor frames. Trans. Am. Math. Soc. 356(5), 2001–2023 (2004) (electronic) · Zbl 1033.42033 · doi:10.1090/S0002-9947-03-03377-4
[10] Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 123–170. Birkhäuser, Boston (1998) · Zbl 0890.42008
[11] Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Math. Studies. Princeton Univ. Press, Princeton (1989) · Zbl 0682.43001
[12] Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974) · Zbl 0279.47014 · doi:10.1016/0022-1236(74)90072-X
[13] Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001) · Zbl 0966.42020
[14] Gröchenig, K.: Multivariate Gabor frames and sampling of entire functions of several variables. Appl. Comput. Harmon. Anal. 31(2), 218–227 (2011) · Zbl 1225.42022 · doi:10.1016/j.acha.2010.11.006
[15] Gröchenig, K., Han, D., Heil, C., Kutyniok, G.: The Balian-Low theorem for symplectic lattices in higher dimensions. Appl. Comput. Harmon. Anal. 13(2), 169–176 (2002) · Zbl 1017.42027 · doi:10.1016/S1063-5203(02)00506-7
[16] Han, D., Wang, Y.: Lattice tiling and the Weyl-Heisenberg frames. Geom. Funct. Anal. 11(4), 742–758 (2001) · Zbl 0992.42021 · doi:10.1007/PL00001683
[17] Han, D., Wang, Y.: The existence of Gabor bases and frames. In: Wavelets, Frames and Operator Theory. Contemp. Math., vol. 345, pp. 183–192. Amer. Math. Soc., Providence (2004) · Zbl 1058.42022
[18] Iosevich, A., Katz, N., Tao, T.: The Fuglede spectral conjecture holds for convex planar domains. Math. Res. Lett. 10(5–6), 559–569 (2003) · Zbl 1087.42018 · doi:10.4310/MRL.2003.v10.n5.a1
[19] Janssen, A.J.E.M.: Signal analytic proof of two basic results on lattice expansions. Appl. Comput. Harmon. Anal. 1(4), 350–354 (1994) · Zbl 0834.42019 · doi:10.1006/acha.1994.1021
[20] Janssen, A.J.E.M.: Some Weyl-Heisenberg frame bound calculations. Indag. Math. 7(2), 165–182 (1996) · Zbl 1056.42512 · doi:10.1016/0019-3577(96)85088-9
[21] Janssen, A.J.E.M.: On generating tight Gabor frames at critical density. J. Fourier Anal. Appl. 9(2), 175–214 (2003) · Zbl 1024.42018 · doi:10.1007/s00041-003-0011-3
[22] Janssen, A.J.E.M.: Zak transforms with few zeros and the tie. In: Advances in Gabor analysis. Appl. Numer. Harmon. Anal., pp. 31–70. Birkhäuser, Boston (2003) · Zbl 1027.42025
[23] Janssen, A.J.E.M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12(2), 259–267 (2002) · Zbl 1005.42021 · doi:10.1006/acha.2001.0376
[24] Kolountzakis, M.N.: The study of translational tiling with Fourier analysis. In: Fourier Analysis and Convexity. Appl. Numer. Harmon. Anal., pp. 131–187. Birkhäuser, Boston (2004) · Zbl 1129.42401
[25] Kolountzakis, M.N., Matolcsi, M.: Tiles with no spectra. Forum Math. 18(3), 519–528 (2006) · Zbl 1130.42039
[26] Luef, F.: Gabor analysis, noncommutative tori and Feichtinger’s algebra. In: Gabor and Wavelet Frames. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap, vol. 10, pp. 77–106. World Sci. Publ., Hackensack (2007) · Zbl 1146.46033
[27] Lyubarskii, Y.I.: Frames in the Bargmann space of entire functions. Adv. Sov. Math. 429, 107–113 (1992)
[28] Pfander, G.E., Rashkov, P.: Window design for multivariate Gabor frames on lattices. Technical Report 21, Jacobs University (2010)
[29] Pfander, G.E., Rashkov, P.: Remarks on multivariate Gaussian Gabor frames. Preprint (2011) · Zbl 1280.42028
[30] Rieffel, M.A.: Projective modules over higher-dimensional noncommutative tori. Can. J. Math. 40(2), 257–338 (1988) · Zbl 0663.46073 · doi:10.4153/CJM-1988-012-9
[31] Ron, A., Shen, Z.: Affine systems in l 2(\(\mathbb{R}\)2) II: Dual systems. J. Fourier Anal. Appl. 3(5), 617–638 (1997) · Zbl 0904.42025 · doi:10.1007/BF02648888
[32] Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992) · Zbl 0745.46033
[33] Yılmaz, Ö.: Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmon. Anal. 14(2), 107–132 (2003) · Zbl 1027.94515 · doi:10.1016/S1063-5203(03)00020-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.