×

Hyperbolicity and complement of graphs. (English) Zbl 1242.05061

Summary: If \(X\) is a geodesic metric space and \(x_1, x_2, x_3\in X\), a geodesic triangle \(T= \{x_1, x_2, x_3\}\) is the union of the three geodesics \([x_1x_2]\), \([x_2x_3]\) and \([x_3x_1]\) in \(X\). The space \(X\) is \(\delta\)-hyperbolic (in the Gromov sense) if any side of \(T\) is contained in a \(\delta\)-neighborhood of the union of the two other sides, for every geodesic triangle \(T\) in \(X\).
We denote by \(\delta(X)\) the sharp hyperbolicity constant of \(X\), i.e. \(\delta(X):= \text{inf}\{\delta\geq 0 : X\) is \(\delta\)-hyperbolic}. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it.
The main aim of this paper is to obtain information about the hyperbolicity constant of the complement graph \(\overline G\) in terms of properties of the graph \(G\). In particular, we prove that if \(\text{diam}(V(G))\geq 3\), then \(\delta(\overline G)\leq 2\), and that the inequality is sharp. Furthermore, we find some Nordhaus-Gaddum type results on the hyperbolicity constant of a graph \(\delta(G)\).

MSC:

05C10 Planar graphs; geometric and topological aspects of graph theory
05C12 Distance in graphs
Full Text: DOI

References:

[1] Bermudo, S.; Rodríguez, J. M.; Sigarreta, J. M.; Vilaire, J.-M., Mathematical properties of Gromov hyperbolic graphs, AIP Conf. Proc., 281, 575-578 (2010)
[2] S. Bermudo, J.M. Rodríguez, J.M. Sigarreta, J.-M. Vilaire, Gromov hyperbolic graphs (submitted for publication).; S. Bermudo, J.M. Rodríguez, J.M. Sigarreta, J.-M. Vilaire, Gromov hyperbolic graphs (submitted for publication).
[3] Brinkmann, G.; Koolen, J.; Moulton, V., On the hyperbolicity of chordal graphs, Ann. Comb., 5, 61-69 (2001) · Zbl 0985.05021
[4] E. Jonckheere, P. Lohsoonthorn, A hyperbolic geometry approach to multipath routing, in: Proceedings of the 10th Mediterranean Conference on Control and Automation, MED 2002, Lisbon, Portugal, July 2002. FA5-1.; E. Jonckheere, P. Lohsoonthorn, A hyperbolic geometry approach to multipath routing, in: Proceedings of the 10th Mediterranean Conference on Control and Automation, MED 2002, Lisbon, Portugal, July 2002. FA5-1.
[5] Jonckheere, E. A., Contrôle du trafic sur les réseaux à géometrie hyperbolique-Une approche mathématique a la sécurité de l’acheminement de l’information, J. Eur. Syst. Autom., 37, 2, 145-159 (2003)
[6] E.A. Jonckheere, P. Lohsoonthorn, Geometry of network security, in: American Control Conference ACC, 2004, pp. 111-151.; E.A. Jonckheere, P. Lohsoonthorn, Geometry of network security, in: American Control Conference ACC, 2004, pp. 111-151.
[7] Koolen, J. H.; Moulton, V., Hyperbolic bridged graphs, European J. Combin., 23, 683-699 (2002) · Zbl 1027.05035
[8] J. Michel, J.M. Rodríguez, J.M. Sigarreta, M. Villeta, Hyperbolicity and parameters of graphs, Ars Combin. (in press).; J. Michel, J.M. Rodríguez, J.M. Sigarreta, M. Villeta, Hyperbolicity and parameters of graphs, Ars Combin. (in press). · Zbl 1265.05200
[9] J. Michel, J.M. Rodríguez, J.M. Sigarreta, M. Villeta, Gromov hyperbolicity in Cartesian product graphs, Proc. Indian Acad. Sci. Math. Sci. (in press).; J. Michel, J.M. Rodríguez, J.M. Sigarreta, M. Villeta, Gromov hyperbolicity in Cartesian product graphs, Proc. Indian Acad. Sci. Math. Sci. (in press). · Zbl 1268.05172
[10] Portilla, A.; Rodríguez, J. M.; Tourís, E., Gromov hyperbolicity through decomposition of metric spaces II, J. Geom. Anal., 14, 123-149 (2004) · Zbl 1047.30028
[11] Rodríguez, J. M.; Sigarreta, J. M.; Vilaire, J.-M.; Villeta, M., On the hyperbolicity constant in graphs, Discrete Math., 311, 211-219 (2011) · Zbl 1226.05147
[12] Rodríguez, J. M.; Tourís, E., Gromov hyperbolicity of Riemann surfaces, Acta Math. Sinica, 23, 209-228 (2007) · Zbl 1115.30050
[13] Oshika, K., Discrete Groups (2002), AMS Bookstore · Zbl 1006.20031
[14] P.A. Hästö, H. Lindén, A. Portilla, J.M. Rodríguez, E. Tourís, Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics, J. Math. Soc. Japan (in press).; P.A. Hästö, H. Lindén, A. Portilla, J.M. Rodríguez, E. Tourís, Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics, J. Math. Soc. Japan (in press). · Zbl 1262.30044
[15] Hästö, P. A.; Portilla, A.; Rodríguez, J. M.; Tourís, E., Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains, Bull. Lond. Math. Soc., 42, 2, 282-294 (2010) · Zbl 1195.30061
[16] P.A. Hästö, A. Portilla, J.M. Rodríguez, E. Tourís, Uniformly separated sets and Gromov hyperbolicity of domains with the quasihyperbolic metric, Medit. J. Math. in press (doi:10.1007/s00009-010-0059-7; P.A. Hästö, A. Portilla, J.M. Rodríguez, E. Tourís, Uniformly separated sets and Gromov hyperbolicity of domains with the quasihyperbolic metric, Medit. J. Math. in press (doi:10.1007/s00009-010-0059-7 · Zbl 1214.30035
[17] Portilla, A.; Tourís, E., A characterization of Gromov hyperbolicity of surfaces with variable negative curvature, Publ. Mat., 53, 83-110 (2009) · Zbl 1153.53320
[18] Ghys, E.; de la Harpe, P., (Sur les Groupes Hyperboliques d’après Mikhael Gromov. Sur les Groupes Hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83 (1990), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA) · Zbl 0731.20025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.