×

Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. (English) Zbl 1241.76306

Summary: Direct numerical simulations (DNSs) of a zero-pressure-gradient boundary layer flow of a polymeric fluid have been performed. The FENE-P model was used for the polymer stresses and a wide range of Weissenberg numbers (\({We}\)) was addressed. In all cases, the streamwise variations of the level of polymer stretching and the level of drag reduction are anticorrelated. Consistent with earlier studies, the inlet condition for the flow consists of Newtonian velocity data with no polymer stretching, so in the upstream region of the boundary layer the polymer molecules stretch strongly in response, leading to an initial spatial maximum in polymer stretching. Beyond this initial region, the level of drag reduction increases with increasing downstream position, while the polymer stretch is decreasing. At sufficiently high Weissenberg numbers, these variations are monotonic with streamwise position (outside the upstream region), but at \({We}= 25\), both the polymer stretching and level of drag reduction display a decaying oscillation in the downstream position. The streamwise dependence of the velocity statistics is also shown. In addition, simulations in which the polymer stress is turned off beyond a chosen downstream position were performed; in this case the flow continues to exhibit substantial drag reduction well downstream of the cutoff position. These observations are analysed in light of other recent literature and in particular the observations of ‘active’ and ‘hibernating’ turbulence recently found in minimal channel flow by Xi and Graham. All of these observations suggest that an important role for viscoelasticity in the turbulent drag reduction phenomenon, at least near solid surfaces, is to suppress conventional turbulence, while leaving behind a much weaker form of turbulence that can persist for a substantial length of time (or downstream distance) even in the absence of viscoelastic stresses.

MSC:

76F70 Control of turbulent flows
76F40 Turbulent boundary layers
76A05 Non-Newtonian fluids
76F65 Direct numerical and large eddy simulation of turbulence

References:

[1] DOI: 10.1007/s10494-005-9002-6 · Zbl 1200.76106 · doi:10.1007/s10494-005-9002-6
[2] DOI: 10.1063/1.2748443 · Zbl 1182.76452 · doi:10.1063/1.2748443
[3] DOI: 10.1016/j.jnnfm.2005.12.012 · Zbl 1143.76337 · doi:10.1016/j.jnnfm.2005.12.012
[4] DOI: 10.1063/1.1829751 · Zbl 1187.76127 · doi:10.1063/1.1829751
[5] DOI: 10.1017/S0022112007006611 · Zbl 1175.76069 · doi:10.1017/S0022112007006611
[6] DOI: 10.1017/S0022112006002321 · Zbl 1145.76027 · doi:10.1017/S0022112006002321
[7] DOI: 10.1103/PhysRevLett.100.134504 · doi:10.1103/PhysRevLett.100.134504
[8] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556 · doi:10.1016/S0045-7930(01)00069-X
[9] DOI: 10.1016/S0142-727X(02)00166-2 · doi:10.1016/S0142-727X(02)00166-2
[10] DOI: 10.1063/1.1979523 · Zbl 1187.76236 · doi:10.1063/1.1979523
[11] Bird, Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory (1987)
[12] DOI: 10.1016/j.jnnfm.2004.07.001 · Zbl 1143.76330 · doi:10.1016/j.jnnfm.2004.07.001
[13] DOI: 10.1016/j.ijheatfluidflow.2006.03.013 · doi:10.1016/j.ijheatfluidflow.2006.03.013
[14] Bird, Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics (1987)
[15] DOI: 10.1017/S0022112007009718 · Zbl 1178.76023 · doi:10.1017/S0022112007009718
[16] DOI: 10.1016/S0142-727X(03)00059-6 · doi:10.1016/S0142-727X(03)00059-6
[17] DOI: 10.1017/S0022112005007950 · Zbl 1085.76004 · doi:10.1017/S0022112005007950
[18] DOI: 10.1016/0021-9991(92)90376-A · Zbl 0760.76059 · doi:10.1016/0021-9991(92)90376-A
[19] DOI: 10.1103/PhysRevLett.104.218301 · doi:10.1103/PhysRevLett.104.218301
[20] Dubief, Center for Turbulence Research Annual Research Briefs 2010 pp 47– (2011)
[21] DOI: 10.1017/S0022112010000066 · Zbl 1189.76326 · doi:10.1017/S0022112010000066
[22] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052 · doi:10.1017/S0022112004000291
[23] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[24] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 · doi:10.1146/annurev.fluid.40.111406.102156
[25] DOI: 10.1017/S0022112099004498 · Zbl 0939.76506 · doi:10.1017/S0022112099004498
[26] DOI: 10.1007/s003480050371 · doi:10.1007/s003480050371
[27] DOI: 10.1002/aic.690210402 · doi:10.1002/aic.690210402
[28] DOI: 10.1137/0913035 · Zbl 0761.65023 · doi:10.1137/0913035
[29] DOI: 10.1063/1.3407666 · Zbl 1190.76119 · doi:10.1063/1.3407666
[30] DOI: 10.1063/1.3103884 · Zbl 1183.76509 · doi:10.1063/1.3103884
[31] DOI: 10.1063/1.3137163 · Zbl 1183.76508 · doi:10.1063/1.3137163
[32] DOI: 10.1063/1.2749816 · Zbl 1182.76744 · doi:10.1063/1.2749816
[33] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[34] DOI: 10.1016/0377-0257(95)01377-8 · doi:10.1016/0377-0257(95)01377-8
[35] DOI: 10.1103/PhysRevLett.89.208301 · doi:10.1103/PhysRevLett.89.208301
[36] DOI: 10.1063/1.1775192 · Zbl 1187.76502 · doi:10.1063/1.1775192
[37] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005 · doi:10.1017/S0022112099007818
[38] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[39] DOI: 10.1017/S0022112010003113 · Zbl 1205.76139 · doi:10.1017/S0022112010003113
[40] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580 · doi:10.1017/S0022112003005305
[41] DOI: 10.1103/RevModPhys.80.225 · doi:10.1103/RevModPhys.80.225
[42] DOI: 10.1016/S0377-0257(01)00128-8 · Zbl 1134.76409 · doi:10.1016/S0377-0257(01)00128-8
[43] DOI: 10.1006/jcph.1998.5882 · Zbl 0936.76026 · doi:10.1006/jcph.1998.5882
[44] DOI: 10.1016/S0377-0257(98)00115-3 · Zbl 0960.76057 · doi:10.1016/S0377-0257(98)00115-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.