×

Inverse heat conduction problems with boundary and final time measured output data. (English) Zbl 1241.35218

Summary: This article presents a systematic study of inverse problems of identifying the unknown source term \(F(x,t)\) of the heat conduction (or linear parabolic) equation \(u_t=(k(x)u_x)_x+F(x,t)\) from measured output data in the form of Dirichlet \(h(t):=u(0,t)\), Neumann \(f(t):=-k(0)u_x(0,t)\) types of boundary conditions, also in the form the final time overdetermination \(u_T(x):=u(x,T)\). In the first part of this article the adjoint problem approach is used to derive formulas for the Fréchet gradient of cost functionals via solutions of the corresponding adjoint problems. It is proved that all these gradients are Lipschitz continuous. Necessary conditions for unicity and hence distinguishablity of solutions of all the three types of inverse source problems are derived. In the second part of this article, semigroup theory is used to obtain a general representation of a solution of the inverse source problem for the abstract evolution equation \(u_t=Au+F\) with final data overdetermination. This representation shows non-uniqueness structure of the inverse problem solution, and also permits to derive a sufficient condition for unicity.

MSC:

35R30 Inverse problems for PDEs
35K05 Heat equation
49N45 Inverse problems in optimal control
Full Text: DOI

References:

[1] DOI: 10.1016/j.jmaa.2006.08.018 · Zbl 1120.35083 · doi:10.1016/j.jmaa.2006.08.018
[2] Renardy M, Introduction to Partial Differential Equations (1993)
[3] Showalter RE, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations (1997)
[4] Bear J, Dynamics of Fluids in Porous Media (1972)
[5] Beck V, Ill-Posed Problems (1985)
[6] DOI: 10.1088/0266-5611/10/6/010 · Zbl 0811.35165 · doi:10.1088/0266-5611/10/6/010
[7] Renardy M, Mathematical Problems in Viscoelasticity (1987)
[8] Zheng C, Applied Contaminant Transport Modelling: Theory and Practice (1995)
[9] DOI: 10.1088/0266-5611/11/4/001 · Zbl 0840.35120 · doi:10.1088/0266-5611/11/4/001
[10] Cannon JR, SIAM J. Numer. Anal. 15 pp 470– (1990)
[11] DOI: 10.1088/0266-5611/14/3/010 · Zbl 0917.35156 · doi:10.1088/0266-5611/14/3/010
[12] Choulli M, C.R. Acad. Sci. Paris, Ser. I. 316 pp 1041– (1993)
[13] DOI: 10.1088/0266-5611/12/3/002 · Zbl 0851.35133 · doi:10.1088/0266-5611/12/3/002
[14] DOI: 10.1088/0266-5611/10/5/009 · Zbl 0807.35154 · doi:10.1088/0266-5611/10/5/009
[15] Háo DN, Methoden und Verfahren der Mathematischen Physik, Band 43 (1998)
[16] DOI: 10.1016/S0168-9274(00)00025-8 · Zbl 0976.65080 · doi:10.1016/S0168-9274(00)00025-8
[17] Isakov V, Inverse Source Problems, American Mathematical Society 34 (1990) · doi:10.1090/surv/034
[18] DOI: 10.1002/cpa.3160440203 · Zbl 0729.35146 · doi:10.1002/cpa.3160440203
[19] Solov’ev VV, Diff. Eqns. 25 pp 1114– (1990)
[20] Vasilev FP, Methods for Solving Extremal Problems (1981)
[21] DOI: 10.1016/S0022-247X(02)00155-5 · Zbl 1007.35104 · doi:10.1016/S0022-247X(02)00155-5
[22] Ladyzhenskaya OA, Boundary Value Problems in Mathematical Physics (1985) · doi:10.1007/978-1-4757-4317-3
[23] Plotnikov VI, Doklady Akad. Nauk SSSR 165 pp 1405– (1965)
[24] Ivanov VK, Theory of Linear Ill-Posed Problems and its Applications (1978)
[25] Tikhonov A, Solution of Ill-Posed Problems (1977)
[26] Zeidler E, Nonlinear Functional Analysis and Its Applications. II/B Nonlinear Monotone Operators (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.