×

Multiple solutions of a quasilinear elliptic problem involving nonlinear boundary condition on exterior domain. (English) Zbl 1241.35106

Summary: We study the multiplicity of non-negative solutions for the quasilinear \(p\)-Laplacian equation with the nonlinear boundary condition \[ \begin{cases}-\Delta_pu+a(x)|u|^{p-2}u=\lambda h(x)|u|^{q-2}u,\quad & x \in\Omega,\\ |\nabla u|^{p-2}\frac{\partial u}{\partial v}=g(x)|u|^{r-2}u,\quad & x\in\partial\Omega,\end{cases}\tag{1} \] where \(\Delta_p\) denotes the \(p\)-Laplacian operator, defined by \(\Delta_pu=\text{div} (|\nabla u|^{p-2}\nabla u)\), \(1<p<N\), \(\Omega\) is a smooth exterior domain in \(\mathbb{R}^N(N>1)\). \(\frac{\partial}{\partial v}\) is the outward normal derivative, \(\lambda\in\mathbb{R}^1\setminus\{0\}\). The parameters \(p,q,r\) are either \(1<r<p<q<p^*=\frac{Np}{N-p}\) or \(1<q<p<r<p_0= \frac{p(N-1)}{N-p}\). The weight functions \(a(x),h(x),g(x)\) satisfy some suitable conditions. Using the decomposition of the Nehari manifold and the variational methods, we prove that problem (1) has at least two positive solutions provided \(0<|\lambda|<\lambda_1\) for some \(\lambda_1\).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
35J62 Quasilinear elliptic equations
35B09 Positive solutions to PDEs
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Keller, Initiation of slime mold aggregati on viewed as an instablity, J. Theor. Biol. 26 pp 399– (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[2] Pino, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Communications in Partial Differential Equations 26 (11-12) pp 2189– (2001) · Zbl 1030.46037 · doi:10.1081/PDE-100107818
[3] Fernández Bonder, Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains, Communications on Pure and Applied Analysis 1 (3) pp 359– (2002) · Zbl 1183.46031 · doi:10.3934/cpaa.2002.1.359
[4] Fernández Bonder, Symmetry properties for the extremals of the Sobolev trace embedding, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 21 (6) pp 795– (2004) · Zbl 1209.35049 · doi:10.1016/j.anihpc.2003.09.005
[5] Fernández Bonder, The behavior of the best Sobolev trace constant and extremals in thin domains, J. Differential Equations 198 (1) pp 129– (2004) · Zbl 1138.35023 · doi:10.1016/j.jde.2003.07.011
[6] Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate, Communications on Pure and Applied Mathematics 43 pp 857– (1990) · Zbl 0713.53024 · doi:10.1002/cpa.3160430703
[7] Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 pp 126– (1984) · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[8] Arcoya, S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology, J. Differential Equations 150 pp 215– (1998) · Zbl 0921.35198 · doi:10.1006/jdeq.1998.3502
[9] Diaz, Elliptic Equations pp 44– (1986)
[10] Pflüger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electronic Journal of Differential Equations 10 pp 1– (1998) · Zbl 0892.35063
[11] Kandilakis, Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearities on unbounded domains, J. Differential Equations 230 pp 337– (2006) · Zbl 1134.35037 · doi:10.1016/j.jde.2006.03.008
[12] Montefusco, Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear Differential Equations with Applications 8 pp 481– (2001) · Zbl 1001.35094 · doi:10.1007/PL00001460
[13] Filippucci, Existence and nonexistence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Communications in Partial Differential Equations 33 pp 706– (2008) · Zbl 1147.35038 · doi:10.1080/03605300701518208
[14] Benmouloud, Existence result for quasilinear elliptic problem on unbounded domains, Nonlinear Analysis 71 pp 1552– (2009) · Zbl 1173.35434 · doi:10.1016/j.na.2008.12.057
[15] Cîrstea, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Analysis 43 pp 623– (2001) · Zbl 0972.35038 · doi:10.1016/S0362-546X(99)00224-2
[16] Wu, Multiple positive solutions of a nonlinear boundary value problem involving a sign-changing weight, Nonlinear Analysis 74 pp 4223– (2011) · Zbl 1221.35163 · doi:10.1016/j.na.2011.03.060
[17] Pohozaev, On the method of fibering a solution in nonlinear boundary value problems, Trudy Matematicheskogo Instituta imeni V.A.Steklova 192 pp 146– (1990)
[18] Yang, Positive solutions of p-Laplacian equations with nonlinear boundary condition, Discrete and Continuous Dynamical Systems, Series B 16 (2) pp 623– (2011) · Zbl 1233.35100 · doi:10.3934/dcdsb.2011.16.623
[19] Afrouzi, A variational approach to a quasilinear elliptic problem involving the p-laplacian and nonlinear boundary condition, Nonlinear Analysis 71 pp 2447– (2009) · Zbl 1173.35487 · doi:10.1016/j.na.2009.01.090
[20] Brown, A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function, Journal of Mathematical Analysis and Applications 337 pp 1326– (2008) · Zbl 1132.35361 · doi:10.1016/j.jmaa.2007.04.064
[21] Garcia-Azorero, A convex-concave problemwith a nonlinear boundary condition, J. Differential Equations 198 pp 91– (2004) · Zbl 1065.35122 · doi:10.1016/S0022-0396(03)00068-8
[22] Brown, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 pp 481– (2003) · Zbl 1074.35032 · doi:10.1016/S0022-0396(03)00121-9
[23] Pohozaev, On an approach to nonlinear equations, Doklady Akademii Nauk 247 pp 1327– (1979)
[24] Pohozaev, On a constructive method in the calculus of variations, Doklady Akademii Nauk 298 pp 1330– (1988)
[25] Adams Robert, Sobolev Spaces (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.