×

Martin boundary and exit space on the Sierpinski gasket. (English) Zbl 1241.31014

Summary: We define a new Markov chain on the symbolic space representing the Sierpinski gasket (SG), and show that the corresponding Martin boundary is homeomorphic to the SG while the minimal Martin boundary is the three vertices of the SG. In addition, the harmonic structure induced by the Markov chain coincides with the canonical one on the SG. This suggests another approach to consider the existence of Laplacians on those self-similar sets for which the problem is still not settled.

MSC:

31C35 Martin boundary theory
60J50 Boundary theory for Markov processes
28A80 Fractals
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
Full Text: DOI

References:

[1] Barlow M T, Bass R. The construction of Brownian motion on the Sierpiński carpet. Ann Inst H Poincaré Probab Statist, 1989, 25: 225–257 · Zbl 0691.60070
[2] Barlow M T, Perkins E A. Brownian motion on the Sierpiński gasket. Probab Theory Related Fields, 1988, 79: 543–623 · Zbl 0635.60090 · doi:10.1007/BF00318785
[3] Chung K L. A course in probability theory. 2nd ed. New York-London: Academic Press, 1974 · Zbl 0345.60003
[4] Denker M, Sato H. Sierpiński gasket as a Martin boundary I: Martin kernels. Potential Anal, 2001, 14: 211–232 · Zbl 0980.60094 · doi:10.1023/A:1011232724842
[5] Denker M, Sato H. Sierpiński gasket as a Martin boundary II: The intrinsic metric. Publ Res Inst Math Sci, 1999, 35: 769–794 · Zbl 0980.60095 · doi:10.2977/prims/1195143423
[6] Denker M, Sato H. Reflections on harmonic analysis of the Sierpiński gasket. Math Nachr, 2002, 241: 32–55 · Zbl 1020.60066 · doi:10.1002/1522-2616(200207)241:1<32::AID-MANA32>3.0.CO;2-5
[7] Dynkin E. The boundary theory of Markov processes (the discrete case). Russian Math Surveys, 1969, 24: 3–42 · Zbl 0222.60048
[8] Imai A. The difference between letters and a Martin kernel of a modulo 5 Markov chain. Adv Appl Math, 2002, 28: 82–106 · Zbl 1001.60077 · doi:10.1006/aama.2001.0768
[9] Hajnal J. Weak ergodicity in non-homogeneous Markov chains. Proc Cambridge Philos Soc, 1958, 54: 233–246 · Zbl 0082.34501 · doi:10.1017/S0305004100033399
[10] Ju H, Lau K-S, Wang X-Y. Post-critically finite fractal and Martin boundary. Trans Amer Math Soc, 2012, 364: 103–118 · Zbl 1244.28004 · doi:10.1090/S0002-9947-2011-05270-0
[11] Kaimanovich V. Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization. In: Fractals in Graz 2001, Trends Math. Boston: Birhäuser, 2003, 145–183 · Zbl 1031.60033
[12] Kigami J. A harmonic calculus on the Sierpiński spaces. Japan J Appl Math, 1989, 6: 259–290 · Zbl 0686.31003 · doi:10.1007/BF03167882
[13] Kigami J. Harmonic calculus on p.c.f. self-similar sets. Trans Amer Math Soc, 1993, 335: 721–755 · Zbl 0773.31009
[14] Kigami J. Analysis on Fractals. Cambridge Tracts in Mathematics, 143. Cambridge: Cambridge University Press, 2001 · Zbl 0998.28004
[15] Kigami J. Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees. Adv Math, 2010, 225: 2674–2730 · Zbl 1234.60077 · doi:10.1016/j.aim.2010.04.029
[16] Kusuoka S. Dirichlet forms on fractals and products of random matrices. Publ Res Inst Math Sci, 1989, 25: 659–680 · Zbl 0694.60071 · doi:10.2977/prims/1195173187
[17] Lau K-S, Wang X-Y. Self-similar sets as hyperbolic boundaries. Indiana Univ Math J, 2009, 58: 1777–1795 · Zbl 1188.28005 · doi:10.1512/iumj.2009.58.3639
[18] Lau K-S, Wang X-Y. Self-similar sets, hyperbolic boundaries and Martin boundaries. Preprint
[19] Lindstrøm T. Brownian motion on nested fractals. Mem Amer Math Soc, 1990, 83, no. 420, iv+128 pp · Zbl 0688.60065
[20] Pearse E P J. Self-similar fractals as boundaries of networks. Preprint
[21] Revuz D. Markov Chains. 2nd ed. Amsterdam: North-Holland Publishing Co., 1984
[22] Strichartz R S. The Laplacian on the Sierpinski gasket via the method of averages. Pacific J Math, 2001, 201: 241–256 · Zbl 1090.35064 · doi:10.2140/pjm.2001.201.241
[23] Strichartz R S. Differential Equations on Fractals, a Tutorial. Princeton: Princeton University Press, 2006 · Zbl 1190.35001
[24] Woess W. Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, 138. Cambridge: Cambridge University Press, 2000 · Zbl 0951.60002
[25] Wolfowitz J. Products of indecomposable, aperiodic, stochastic matrices. Proc Amer Math Soc, 1963, 14: 733–737 · Zbl 0116.35001 · doi:10.1090/S0002-9939-1963-0154756-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.