×

Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. (English) Zbl 1239.93059

Summary: In this paper, a robust control system combining backstepping and sliding mode control techniques is used to realize the synchronization of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in the external electrical stimulation. A backstepping sliding mode approach is applied firstly to compensate the uncertainty which occur in the control system. However, the bound of uncertainty is necessary in the design of the backstepping sliding mode controller. To relax the requirement for the bound of uncertainty, an adaptive backstepping sliding mode controller with a simple adaptive law to adapt the uncertainty in real time is designed. The adaptive backstepping sliding mode control system is robust for time-varying external disturbances. The simulation results demonstrate the effectiveness of the control scheme.

MSC:

93C40 Adaptive control/observation systems
93B12 Variable structure systems
34H10 Chaos control for problems involving ordinary differential equations
Full Text: DOI

References:

[1] Manyakov, N. V.; Van Hulle, M. M., Synchronization in monkey visual cortex analyzed with an information-theoretic measure, Chaos, 18, 037130 (2008)
[2] Elson, R. C.; Selverston, A. I.; Huerta, R.; Rulkov, N. F.; Rabinovich, M. I.; Abarbanel, H. D.I., Synchronous behavior of two coupled biological neurons, Phys. Rev. Lett., 81, 5692-5695 (1998)
[3] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys. Rep., 366, 1-101 (2002) · Zbl 0995.37022
[4] Singer, W., Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 55, 349-374 (1993)
[5] MacKay, W. A., Synchronized neuronal oscillations and their role in motor processes, Trends Cogn. Sci., 1, 176-183 (1997)
[6] Freund, H. J., Motor unit and muscle activity in voluntary motor control, Physiol. Rev., 63, 387-436 (1983)
[7] Levy, R.; Hutchison, W. D.; Lozano, A. M.; Dostrovsky, J. O., High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor, J. Neurosci., 20, 7766-7775 (2000)
[8] Wang, J.; Deng, B.; Tsang, K. M., Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation, Chaos Solitons Fract., 22, 469-476 (2004) · Zbl 1060.93525
[9] Wang, Q. Y.; Lu, Q. S.; Chen, G. R.; Guo, D. H., Chaos synchronization of coupled neurons with gap junctions, Phys. Lett. A, 356, 17-25 (2006) · Zbl 1160.81304
[10] Elson, R. C.; Selverston, A. I.; Huerta, R.; Rulkov, N. F.; Rabinovich, M. I.; Abarbanel, H. D.I., Synchronous behavior of two coupled biological neurons, Phys. Rev. Lett., 81, 5692-5695 (1999)
[11] Che, Y. Q.; Wang, J.; Zhou, S. S.; Deng, B., Robust synchronization control of coupled chaotic neurons under external electrical stimulation, Chaos Solitons Fract., 40, 1333-1342 (2009) · Zbl 1197.37110
[12] Cornejo-Pérezand, O.; Femat, R., Unidirectional synchronization of Hodgkin-Huxley neurons, Chaos Solitons Fract., 25, 43-53 (2005) · Zbl 1092.37539
[13] Wang, J.; Deng, B.; Fei, X. Y., Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control, Chaos Solitons Fract., 29, 182-189 (2006)
[14] Wang, J.; Deng, B.; Fei, X. Y., Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation, Chaos Solitons Fract., 27, 1272-1278 (2006) · Zbl 1092.92503
[15] Batista, C. A.S.; Lopes, S. R.; Viana, R. L.; Batista, A. M., Delayed feedback control of bursting synchronization in a scale-free neuronal network, Neural Netw., 23, 114-124 (2010)
[16] Popovych, O. V.; Hauptmann, C.; Tass, P. A., Control of neuronal synchrony by nonlinear delayed feedback, Biol. Cybernet., 95, 69-85 (2006) · Zbl 1169.93338
[17] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (1961)
[18] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500-544 (1952)
[19] Thompson, C. J.; Bardos, D. C.; Yang, Y. S.; Joyner, K. H., Nonlinear cable models for cells exposed to electric fields I. General theory and space – clamped solutions, Chaos Solitans Fract., 10, 1825-1842 (1999) · Zbl 0967.35139
[20] Lin, F. J.; Shen, P. H.; Hsu, S. P., Adaptive backstepping sliding mode control for linear induction motor drive, IEE Proc. Elect. Power Appl., 149, 184-194 (2002)
[21] Rolf, V.; Robert, W., The electrophysiology of gap junctions and gap junction channels and their mathematical modeling, Biol Cell., 94, 501-510 (2002)
[22] Stephen, B., Cells coupled by voltage-dependent gap junctions: the asymptotic dynamical limit, BioSystems, 68, 213-222 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.