×

Success rate of a biological invasion in terms of the spatial distribution of the founding population. (English) Zbl 1238.92046

Summary: We analyze the role of the spatial distribution of the initial conditions in reaction-diffusion models of biological invasion. Our study shows that, in the presence of an Allee effect, the precise shape of the initial (or founding) population is of critical importance for successful invasion. Results are provided for one-dimensional and two-dimensional models. In the one-dimensional case, we consider initial conditions supported by two disjoint intervals of length \(L/2\) and separated by a distance \(\alpha\). Analytical as well as numerical results indicate that the critical size \(L^{\ast}(\alpha)\) of the population, where the invasion is successful if and only if \(L > L^{\ast}(\alpha)\), is a continuous function of \(\alpha\) and tends to increase with \(\alpha\), at least when \(\alpha\) is not too small. This result emphasizes the detrimental effect of fragmentation.
In the two-dimensional case, we consider more general, stochastically generated initial conditions \(u_{0}\), and we provide a new and rigorous definition of the rate of fragmentation of \(u_{0}\). We then conduct a statistical analysis of the probability of successful invasion depending on the size of the support of \(u_{0}\) and the fragmentation rate of \(u_{0}\). Our results show that the outcome of an invasion is almost completely determined by these two parameters. Moreover, we observe that the minimum abundance required for successful invasion tends to increase in a nonlinear fashion with the fragmentation rate. This effect of fragmentation is enhanced as the strength of the Allee effect is increased.

MSC:

92D40 Ecology
92D15 Problems related to evolution
35K57 Reaction-diffusion equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Allee, W. C. (1938). The social life of animals. New York: Norton.
[2] Aronson, D. G., & Weinberger, H. G. (1978). Multidimensional non-linear diffusion arising in population-genetics. Advances in Mathematics, 30(1), 33–76. · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[3] Berec, L., Angulo, E., & Courchamp, F. (2007). Multiple Allee effects and population management. Trends in Ecology & Evolution, 22, 185–191. · doi:10.1016/j.tree.2006.12.002
[4] Berestycki, H., Hamel, F., & Nadin, G. (2008). Asymptotic spreading in heterogeneous diffusive excitable media. Journal of Functional Analysis, 255(9), 2146–2189. · Zbl 1234.35033 · doi:10.1016/j.jfa.2008.06.030
[5] Berestycki, H., Hamel, F., & Roques, L. (2005). Analysis of the periodically fragmented environment model: I - Species persistence. Journal of Mathematical Biology, 51(1), 75–113. · Zbl 1066.92047 · doi:10.1007/s00285-004-0313-3
[6] Berestycki, H., Hamel, F., & Rossi, L. (2007). Liouville-type results for semilinear elliptic equations in unbounded domains. Annali Di Matematica Pura Ed Applicata, 186(3), 469–507. · Zbl 1223.35022 · doi:10.1007/s10231-006-0015-0
[7] Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction–diffusion equations. Chichester: Wiley. · Zbl 1059.92051
[8] DAISIE (2009). Handbook of alien species in Europe. Dordrecht: Springer.
[9] DAISIE (2010). BioRisk 4: Alien terrestrial arthropods of Europe, vol. 1 and 2. Sofia/Moscow: Pensoft.
[10] Dennis, B. (1989). Allee effects: population growth, critical density, and the chance of extinction. Natural Resource Modeling, 3, 481–538. · Zbl 0850.92062
[11] Dobson, A. P., & May, R. M. (1986). Patterns of invasions by pathogens and parasites. In H. A. Mooney & J. A. Drake (Eds.), Ecology of biological invasions of north America and Hawaii (pp. 58–76). New York: Springer.
[12] Drake, J. M. (2004). Allee effects and the risk of biological invasion. Risk Analysis, 24, 795–802. · doi:10.1111/j.0272-4332.2004.00479.x
[13] Drury, K. L. S., Drake, J. M., Lodge, D. M., & Dwyer, G. (2007). Immigration events dispersed in space and time: Factors affecting invasion success. Ecological Modelling, 206, 63–78. · doi:10.1016/j.ecolmodel.2007.03.017
[14] Du, Y., & Matano, H. (2010). Convergence and sharp thresholds for propagation in nonlinear diffusion problems. Journal of the European Mathematical Society, 12, 279–312. · Zbl 1207.35061 · doi:10.4171/JEMS/198
[15] Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515. · doi:10.1146/annurev.ecolsys.34.011802.132419
[16] Fife, P. C. (1979). Long-time behavior of solutions of bistable non-linear diffusion equations. Archive for Rational Mechanics and Analysis, 70(1), 31–46. · Zbl 0435.35045 · doi:10.1007/BF00276380
[17] Fife, P. C., & McLeod, J. (1977). The approach of solutions of nonlinear diffusion equations to traveling front solutions. Archive for Rational Mechanics and Analysis, 65(1), 335–361. · Zbl 0361.35035 · doi:10.1007/BF00250432
[18] Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 335–369. · JFM 63.1111.04
[19] Friedman, A. (1964). Partial differential equations of parabolic type. Englewood Cliffs: Prentice-Hall. · Zbl 0144.34903
[20] Gardner, R. H., Milne, B. T., Turner, M. G., & O’Neill, R. V. (1987). Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology, 1, 19–28. · doi:10.1007/BF02275262
[21] Hamel, F., Fayard, J., & Roques, L. (2010). Spreading speeds in slowly oscillating environments. Bulletin of Mathematical Biology, 72(5), 1166–1191. · Zbl 1197.92044 · doi:10.1007/s11538-009-9486-7
[22] Harary, F., & Harborth, H. (1976). Extremal animals. Journal of Combinatorics, Information & System Sciences, 1, 1–8. · Zbl 0402.05055
[23] IUCN (2000). Guidelines for the prevention of biodiversity loss caused by alien invasive species prepared by the Species Survival Commission (SSC) invasive species specialist group. Approved by the 51st Meeting of the IUCN Council, Gland.
[24] IUCN (2002). Policy recommendations papers for sixth meeting of the Conference of the Parties to the Convention on Biological Diversity (COP6). The Hague, Netherlands.
[25] Kanarek, A. R., & Webb, C. T. (2010). Allee effects, adaptive evolution, and invasion success. Evolutionary Applications, 3, 122–135. · doi:10.1111/j.1752-4571.2009.00112.x
[26] Kanel, J. I. (1964). Stabilization of solutions of the equations of combustion theory with finite initial functions. Matematicheskii Sbornik, 65, 398–413.
[27] Keitt, T. H. (2000). Spectral representation of neutral landscapes. Landscape Ecology, 15, 479–494. · doi:10.1023/A:1008193015770
[28] Keitt, T. H., Lewis, M. A., & Holt, R. D. (2001). Allee effects, invasion pinning, and species’ borders. The American Naturalist, 157, 203–216. · doi:10.1086/318633
[29] Kenis, M. (2006). Insects-insecta. In R. Wittenberg (Ed.), Invasive alien species in Switzerland. An inventory of alien species and their threat to biodiversity and economy in Switzerland (pp. 131–211). Swiss Confederation–Federal Office for the Environment Environmental Studies.
[30] Kenis, M., Auger-Rozenberg, M.-A., Roques, A., Timms, L., Péré, C., Cock, M. J. W., Settele, J., Augustin, S., & Lopez-Vaamonde, C. (2009). Ecological effects of invasive alien insects. Biological Invasions, 11(1), 21–45. · doi:10.1007/s10530-008-9318-y
[31] Kirkpatrick, M., & Barton, N. H. (1997). Evolution of a species’ range. The American Naturalist, 150, 1–23. · doi:10.1086/286054
[32] Kolmogorov, A. N., Petrovsky, I. G., & Piskunov, N. S. (1937). Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin de l’Université d’État de Moscou, Série Internationale A, 1, 1–26.
[33] Kramer, A. M., Dennis, B., Liebhold, A. M., & Drake, J. M. (2009). The evidence for Allee effects. Population Ecology, 51, 341–354. · doi:10.1007/s10144-009-0152-6
[34] Lande, R. (1998). Demographic stochasticity and Allee effect on a scale with isotrophic noise. Oikos, 83, 353–358. · doi:10.2307/3546849
[35] Leung, B., Drake, J. M., & Lodge, D. M. (2004). Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology, 85, 1651–1660. · doi:10.1890/02-0571
[36] Lewis, M. A., & Kareiva, P. (1993). Allee dynamics and the speed of invading organisms. Theoretical Population Biology, 43, 141–158. · Zbl 0769.92025 · doi:10.1006/tpbi.1993.1007
[37] Mccarthy, M. A. (1997). The Allee effect, finding mates and theoretical models. Ecological Modelling, 103(1), 99–102. · doi:10.1016/S0304-3800(97)00104-X
[38] Murray, J. D. (2002). Interdisciplinary applied mathematics: Vol. 17. Mathematical biology (3rd ed.). New York: Springer.
[39] Pease, C. P., Lande, R., & Bull, J. J. (1989). A model of population growth, dispersal and evolution in a changing environment. Ecology, 70, 1657–1664. · doi:10.2307/1938100
[40] Protter, M. H., & Weinberger, H. F. (1967). Maximum principles in differential equations. Englewood Cliffs: Prentice-Hall. · Zbl 0153.13602
[41] Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. Dane, & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107. · doi:10.1046/j.1472-4642.2000.00083.x
[42] Roques, A., Rabitsch, W., Rasplus, J.-Y., Lopez-Vaamonde, C., Nentwig, W., & Kenis, M. (2009). Alien terrestrial invertebrates of Europe. Dordrecht: Springer.
[43] Roques, L., & Chekroun, M. D. (2007). On population resilience to external perturbations. SIAM Journal on Applied Mathematics, 68(1), 133–153. · Zbl 1138.35041 · doi:10.1137/060676994
[44] Roques, L., & Chekroun, M. D. (2010). Does reaction–diffusion support the duality of fragmentation effect? Ecological Complexity, 7, 100–106. · doi:10.1016/j.ecocom.2009.07.003
[45] Roques, L., & Hamel, F. (2007). Mathematical analysis of the optimal habitat configurations for species persistence. Mathematical Biosciences, 210(1), 34–59. · Zbl 1131.92068 · doi:10.1016/j.mbs.2007.05.007
[46] Roques, L., & Stoica, R. S. (2007). Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments. Journal of Mathematical Biology, 55(2), 189–205. · Zbl 1128.35361 · doi:10.1007/s00285-007-0076-8
[47] Roques, L., Roques, A., Berestycki, H., & Kretzschmar, A. (2008). A population facing climate change: joint influences of Allee effects and environmental boundary geometry. Population Ecology, 50(2), 215–225. · doi:10.1007/s10144-007-0073-1
[48] Shigesada, N., & Kawasaki, K. (1997). Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press.
[49] Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218. · Zbl 0043.14401
[50] Turchin, P. (1998). Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Sunderland, MA.
[51] Veit, R. R., & Lewis, M. A. (1996). Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. The American Naturalist, 148, 255–274. · doi:10.1086/285924
[52] Vilà, M., Pyšek, B. C. P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D., Hulme, P. E., & Partners, D. (2009). How well do we understand the impacts of alien species on ecosystem services? A pan-European cross-taxa assessment. Frontiers in Ecology and the Environment.
[53] Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kuhn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarošík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., Ott, J., Panov, V. E., Reineking, B., Robinet, C., Semenchenko, V., Solarz, W., Thuiller, W., Vilà, M., Vohland, K., & Settele, J. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24(12), 686–693. · doi:10.1016/j.tree.2009.06.008
[54] Yamanaka, T., & Liebhold, A. M. (2009). Mate-location failure, the Allee effect, and the establishment of invading populations. Population Ecology, 51, 337–340. · doi:10.1007/s10144-009-0158-0
[55] Zlatoš, A. (2006). Sharp transition between extinction and propagation of reaction. Journal of the American Mathematical Society, 19, 251–263. · Zbl 1081.35011 · doi:10.1090/S0894-0347-05-00504-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.