×

On urn models, non-commutativity and operator normal forms. (English) Zbl 1238.82003

Summary: Non-commutativity is ubiquitous in mathematical modeling of reality and in many cases same algebraic structures are implemented in different situations. Here we consider the canonical commutation relation of quantum theory and discuss a simple urn model of the latter. It is shown that enumeration of urn histories provides a faithful realization of the Heisenberg-Weyl algebra. Drawing on this analogy we demonstrate how the operator normal forms facilitate counting of histories via generating functions, which in turn yields an intuitive combinatorial picture of the ordering procedure itself.

MSC:

82B10 Quantum equilibrium statistical mechanics (general)
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81R15 Operator algebra methods applied to problems in quantum theory

References:

[1] Dirac, P. A.M., The Principles of Quantum Mechanics (1958), Oxford University Press · Zbl 0080.22005
[2] Isham, C. J., Lectures on Quantum Theory: Mathematical and Structural Foundations (1995), Imperial College Press · Zbl 0875.81001
[3] Ballentine, L. E., Quantum Mechanics: A Modern Development (1998), World Scientific · Zbl 0997.81501
[4] Wilcox, R. M., J. Math. Phys., 8, 962 (1967) · Zbl 0173.29604
[5] Louisell, W. H., Quantum Statistical Properties of Radiation (1973), Wiley-Interscience · Zbl 0133.45301
[6] Blasiak, P.; Horzela, A.; Penson, K. A.; Solomon, A. I.; Duchamp, G. H.E., Am. J. Phys., 75, 639 (2007) · Zbl 1219.81165
[7] Flajolet, P.; Dumas, P.; Puyhaubert, V., Some exactly solvable models of urn process theory, (Proceedings of the 4th Colloquium on “Mathematics and Computer Science”. Proceedings of the 4th Colloquium on “Mathematics and Computer Science”, Nancy, France, 2006. Proceedings of the 4th Colloquium on “Mathematics and Computer Science”. Proceedings of the 4th Colloquium on “Mathematics and Computer Science”, Nancy, France, 2006, Discrete Math. Theor. (Proc.), vol. AG (2006)), 59-118 · Zbl 1193.60011
[8] Mahmoud, H. M., Pólya Urn Models (2009), Chapman & Hall/CRC · Zbl 1149.60005
[9] Johnson, N. L.; Kots, S., Urn Models and Their Applications: An Approach to Modern Probability Theory (1977), John Wiley & Sons · Zbl 0352.60001
[10] Flajolet, P.; Sedgewick, R., Analytic Combinatorics (2009), Cambridge University Press · Zbl 1165.05001
[11] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial Species and Tree-like Structures (1998), Cambridge University Press · Zbl 0888.05001
[12] Wilf, H. S., Generatingfunctionology (2006), A.K. Peters, Ltd. · Zbl 1092.05001
[13] Blasiak, P.; Duchamp, G. H.E.; Solomon, A. I.; Horzela, A.; Penson, K. A., Adv. Theor. Math. Phys. (ISSN 1095-0761 (print); 1095-0753 (online)) 14 (2010), in press
[14] Blasiak, P.; Horzela, A.; Duchamp, G. H.E.; Penson, K. A.; Solomon, A. I., Proceedings of the 10th International School on Theoretical Physics “Symmetry and Structural Properties of Condensed Matter”. Proceedings of the 10th International School on Theoretical Physics “Symmetry and Structural Properties of Condensed Matter”, Myczkowce, Poland, 2009. Proceedings of the 10th International School on Theoretical Physics “Symmetry and Structural Properties of Condensed Matter”. Proceedings of the 10th International School on Theoretical Physics “Symmetry and Structural Properties of Condensed Matter”, Myczkowce, Poland, 2009, J. Phys.: Conf. Ser., 213, 012014 (2010)
[15] Blasiak, P.; Duchamp, G. H.E.; Horzela, A.; Penson, K. A.; Solomon, A. I., J. Phys. A: Math. Theor., 41, 415204 (2008), Oberwolfach Preprint OWP 2009-02, 2009 · Zbl 1192.81180
[16] Feinsilver, P.; Schott, R., Algebraic Structures and Operator Calculus, vol. II: Special Functions and Computer Science (1994), Kluwer Academic Publishers · Zbl 1128.33300
[17] Klauder, J. R.; Skagerstam, B.-S., Coherent States: Application in Physics and Mathematical Physic (1985), World Scientific · Zbl 1050.81558
[18] Schleich, W. P., Quantum Optics in Phase Space (2001), Wiley-VCH · Zbl 0961.81136
[19] Gazeau, J.-P., Coherent States in Quantum Physics (2009), Wiley-VCH
[20] Weinberg, S., The Quantum Theory of Fields (1995), Cambridge University Press · Zbl 0959.81002
[21] Mattuck, R. D., A Guide to Feynman Diagrams in the Many-Body Problem (1992), Dover Publications
[22] Solomon, A. I., Found. Phys., 40, 684 (2010) · Zbl 1197.81198
[23] Blasiak, P., Discrete Math. Theor., 12, 381 (2010)
[24] Louck, J. D., Unitary Symmetry and Combinatorics (2008), World Scientific · Zbl 1190.51002
[25] Spekkens, R. W., Phys. Rev. A, 75, 032110 (2007)
[26] Coecke, B., Contemp. Phys., 51, 59 (2010)
[27] Baez, J.; Dolan, J., From finite sets to Feynman diagrams, (Mathematics Unlimited - 2001 and Beyond (2001), Springer), 29-50 · Zbl 1004.18001
[28] Wright, R., Found. Phys., 20, 881 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.