×

A review of geometric optimal control for quantum systems in nuclear magnetic resonance. (English) Zbl 1238.81181

Summary: We present a geometric framework to analyze optimal control problems of uncoupled spin 1/2 particles occurring in nuclear magnetic resonance. According to the Pontryagin’s maximum principle, the optimal trajectories are solutions of a pseudo-Hamiltonian system. This computation is completed by sufficient optimality conditions based on the concept of conjugate points related to Lagrangian singularities. This approach is applied to analyze two relevant optimal control issues in NMR: the saturation control problem, that is, the problem of steering in minimum time a single spin 1/2 particle from the equilibrium point to the zero magnetization vector, and the contrast imaging problem. The analysis is completed by numerical computations and experimental results.

MSC:

81V35 Nuclear physics
49J15 Existence theories for optimal control problems involving ordinary differential equations
70E05 Motion of the gyroscope
49S05 Variational principles of physics

References:

[1] R. R. Ernst, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, International Series of Monographs on Chemistry, Oxford University Press, Oxford, UK, 1990.
[2] M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, John Wiley & Sons, New York, NY, USA, 2008.
[3] V. Jurdjevic, Geometric Control Theory, Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, Cambridge, UK, 1997. · Zbl 0940.93005
[4] L. Pontryagin, V. Boltianski, R. Gamkrélidzé, and E. Michtchenko, Théorie Mathématique des Processus Optimaux, Mir, Moscow, Russia, 1974. · Zbl 0289.49002
[5] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, NY, USA, 1967. · Zbl 0159.13201
[6] M. Fliess, “Fonctionnelles causales non linéaires et indéterminées non commutatives,” Bulletin de la Société Mathématique de France, vol. 109, no. 1, pp. 3-40, 1981. · Zbl 0476.93021
[7] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny, “Singular extremals for the time-optimal control of dissipative spin 1/2 particles,” Physical Review Letters, vol. 104, no. 8, Article ID 083001, 4 pages, 2010. · doi:10.1103/PhysRevLett.104.083001
[8] A. A. Agrachev and L. Y. Sachkov, “Control theory from the geometric viewpoint,” in Control Theory and Optimization. II, vol. 87 of Encyclopaedia of Mathematical Sciences, Springer, Berlin, Germany, 2004. · Zbl 1062.93001
[9] B. Bonnard and I. Kupka, “Théorie des singularités de l’application entré/sortie et optimalité des trajectoires singulières dans le problème du temps minimal,” Forum Mathematicum, vol. 5, no. 2, pp. 111-159, 1993. · Zbl 0779.49025 · doi:10.1515/form.1993.5.111
[10] A. A. Agrachev and R. V. Gamkrelidze, “Feedback-invariant optimal control theory and differential geometry-I: regular extremals,” Journal of Dynamical and Control Systems, vol. 3, no. 3, pp. 343-389, 1997. · Zbl 0952.49019 · doi:10.1007/BF02463256
[11] C. Westbrook and C. Roth, MRI in Practice, Blackwell, Oxford, UK, 3rd edition, 2005.
[12] A. J. Krener, “The high order maximal principle and its application to singular extremals,” SIAM Journal on Control and Optimization, vol. 15, no. 2, pp. 256-293, 1977. · Zbl 0354.49008 · doi:10.1137/0315019
[13] B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, vol. 40 of Mathématiques and Applications, Springer, Berlin, Germany, 2003. · Zbl 1022.93003
[14] B. Bonnard, J. B. Caillau, and E. Trélat, “Second order optimality conditions in the smooth case and applications in optimal control,” ESAIM-Control, Optimisation and Calculus of Variations, vol. 13, no. 2, pp. 207-236, 2007. · Zbl 1123.49014 · doi:10.1051/cocv:2007012
[15] U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2D manifolds, vol. 43 of Mathematiques and Applications, Springer, Berlin, Germany, 2004. · Zbl 1137.49001
[16] G. M. Bydder, J. V. Hajnal, and I. R. Young, “MRI: use of the inversion recovery pulse sequence,” Clinical Radiology, vol. 53, no. 3, pp. 159-176, 1998. · doi:10.1016/S0009-9260(98)80096-2
[17] S. L. Patt and B. D. Sykes, “Water eliminated fourier transform NMR spectroscopy,” The Journal of Chemical Physics, vol. 56, no. 6, pp. 3182-3184, 1972.
[18] I. Kupka, “Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case,” Transactions of the American Mathematical Society, vol. 299, no. 1, pp. 225-243, 1987. · Zbl 0606.49016 · doi:10.2307/2000491
[19] H. J. Sussmann, “The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case,” SIAM Journal on Control and Optimization, vol. 25, no. 4, pp. 868-904, 1987. · Zbl 0664.93034 · doi:10.1137/0325048
[20] H. Schättler, “Regularity properties of optimal trajectories: recently developed techniques,” in Nonlinear Controllability and Optimal Control, vol. 133 of Monographs and Textbooks in Pure and Applied Mathematics, New York, NY, USA, 1990. · Zbl 0702.49033
[21] B. Bonnard, M. Chyba, and D. Sugny, “Time-minimal control of dissipative two-level quantum systems: the generic case,” IEEE Transactions on Automatic Control, vol. 54, no. 11, p. 2598, 2009. · Zbl 1288.81052 · doi:10.1109/TAC.2009.2031212
[22] E. Assémat, M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny, “Simultaneous time-optimal control of the inversion of two spin-1/2 particles,” Physical Review A, vol. 82, Article ID 013415, 6 pages, 2010. · Zbl 1216.81086 · doi:10.1103/PhysRevA.82.013415
[23] B. Bonnard, “Feedback equivalence for nonlinear systems and the time optimal control problem,” SIAM Journal on Control and Optimization, vol. 29, no. 6, pp. 1300-1321, 1991. · Zbl 0744.93033 · doi:10.1137/0329067
[24] A. O. Remizov, “Implicit differential equations and vector fields with non-isolated singular points,” Sbornik Mathematics, vol. 193, no. 11-12, pp. 1671-1690, 2002. · Zbl 1082.34501 · doi:10.1070/SM2002v193n11ABEH000693
[25] J. Sotomayor and M. Zhitomirskii, “Impasse singularities of differential systems of the form A(x)x\?=F(x),” Journal of Differential Equations, vol. 169, no. 2, pp. 567-587, 2001. · Zbl 0982.34028 · doi:10.1006/jdeq.2000.3908
[26] H. Moyer, “Sufficient conditions for a strong minimum in singular control problems,” SIAM Journal on Control and Optimization, vol. 11, no. 4, pp. 620-636, 1973. · Zbl 0241.49010 · doi:10.1137/0311048
[27] P. V. Kokotovic, “Applications of singular perturbation techniques to control problems,” SIAM Review, vol. 26, no. 4, pp. 501-550, 1984. · Zbl 0548.93001 · doi:10.1137/1026104
[28] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications,” Reviews in Mathematical Physics, vol. 22, no. 6, pp. 597-667, 2010. · Zbl 1208.49001 · doi:10.1142/S0129055X10004053
[29] http://apo.enseeiht.fr/hampath/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.