×

Highly symmetric bi-frames for triangle surface multiresolution processing. (English) Zbl 1238.42018

Symmetry property of wavelets or wavelet frames is of particular importance in applications such as triangle surface multiresolution processing. This paper introduces the concept of \(6\)-fold axial symmetry in Definition 1 for bivariate dyadic dual wavelet frames with four high-pass primal filters and four high-pass dual filters. Based on box splines and the butterfly interpolatory subdivision scheme and by solving systems of nonlinear algebraic equations, this paper presents in Sections 4–7 several interesting examples of bivariate dual wavelet frames having short supports and \(6\)-fold axial symmetry. For the constructed Loop’s scheme-based dual wavelet frames, multiresulotion algorithms are provided for extraordinary vertices and boundary vertices of triangular meshes. Its application to triangle surface multiresolution processing is given in Section 8.
Reviewer: Bin Han (Edmonton)

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames
Full Text: DOI

References:

[1] Benedetto, J. J.; Li, S. D., The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5, 389-427 (1998) · Zbl 0915.42029
[2] Bertram, M., Biorthogonal loop-subdivision wavelets, Computing, 72, 29-39 (2004) · Zbl 1060.65017
[3] Bertram, M.; Duchaineau, M. A.; Hamann, B.; Joy, K. I., Generalized B-spline subdivision-surface wavelets for geometry compression, IEEE Trans. Vis. Comput. Graph., 10, 326-338 (2004)
[4] de Boor, C.; Höllig, K.; Riemenschneider, S. D., Box Splines (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0814.41012
[5] Cai, J. F.; Chan, R. H.; Shen, L. X.; Shen, Z. W., Restoration of chopped and nodded images by framelets, SIAM J. Sci. Comput., 24, 1205-1227 (2008) · Zbl 1161.94303
[6] Cai, J. F.; Chan, R. H.; Shen, Z. W., A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 25, 131-149 (2008) · Zbl 1135.68056
[7] Cai, J. F.; Osher, S.; Shen, Z. W., Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8, 337-369 (2009) · Zbl 1189.94014
[8] Casazza, P. G., The art of frame theory, Taiwanese J. Math., 4, 129-201 (2000) · Zbl 0966.42022
[9] Chan, R. H.; Chan, T. F.; Shen, L. X.; Shen, Z. W., Wavelet algorithms for high-resolution image reconstruction, SIAM J. Sci. Comput., 24, 1408-1432 (2003) · Zbl 1031.68127
[10] Chan, R. H.; Riemenschneider, S. D.; Shen, L. X.; Shen, Z. W., Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 17, 91-115 (2004) · Zbl 1046.42026
[11] Charina, M.; Stöckler, J., Tight wavelet frames for subdivision, J. Comput. Appl. Math., 221, 293-301 (2008) · Zbl 1152.65125
[12] Charina, M.; Stöckler, J., Tight wavelet frames for irregular multiresolution analysis, Appl. Comput. Harmon. Anal., 25, 98-113 (2008) · Zbl 1258.42030
[13] A. Chebira, Adaptive multiresolution frame classification of biomedical images, Ph.D. dissertation, Carnegie Mellon University, 2008.; A. Chebira, Adaptive multiresolution frame classification of biomedical images, Ph.D. dissertation, Carnegie Mellon University, 2008.
[14] Christensen, O., An Introduction to Frames and Riesz Bases (2002), Birkhäuser: Birkhäuser Boston
[15] Dahmen, W., Decomposition of refinable spaces and applications to operator equations, Numer. Algorithms, 5, 229-245 (1993) · Zbl 0790.65098
[16] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61 (1992), SIAM: SIAM Philadelphia, PA · Zbl 0776.42018
[17] Daubechies, I.; Han, B.; Ron, A.; Shen, Z. W., Framelets: MRA-based construction of wavelet frames, Appl. Comput. Harmon. Anal., 14, 1-46 (2003) · Zbl 1035.42031
[18] Donoho, D., Denoising by soft thresholding, IEEE Trans. Inform. Theory, 41, 613-627 (1995) · Zbl 0820.62002
[19] Dyn, N.; Gregory, J. A.; Levin, D., A butterfly subdivision scheme for surface interpolation with tension control, ACM Trans. Graph., 2, 160-169 (1990) · Zbl 0726.68076
[20] Ehler, M., On multivariate compactly supported bi-frames, J. Fourier Anal. Appl., 13, 511-532 (2007) · Zbl 1141.42021
[21] Ehler, M.; Han, B., Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Comput. Harmon. Anal., 25, 407-414 (2008) · Zbl 1221.42062
[22] Elsey, M.; Esedoglu, S., Analogue of the total variation denoising model in the context of geometry processing, SIAM J. Multiscale Model. Simul., 7, 1549-1573 (2009) · Zbl 1185.68803
[23] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Birkhäuser: Birkhäuser Boston · Zbl 0966.42020
[24] Gröchenig, K.; Ron, A., Tight compactly supported wavelet frames of arbitrary high smoothness, Proc. Amer. Math. Soc., 126, 1101-1107 (1998) · Zbl 0911.42014
[25] Guskov, I., Manifold-based approach to semi-regular remeshing, Graph. Models, 69, 1-18 (2007)
[26] Han, B.; Shen, Z. W., Wavelets from the Loop scheme, J. Fourier Anal. Appl., 11, 615-637 (2005) · Zbl 1129.42434
[27] Heil, C.; Walnut, D., Continuous and discrete wavelet transforms, SIAM Rev., 31, 628-666 (1989) · Zbl 0683.42031
[28] Jia, R. Q., Approximation properties of multivariate wavelets, Math. Comp., 67, 647-665 (1998) · Zbl 0889.41013
[29] Jiang, Q. T., Hexagonal tight frame filter banks with idealized high-pass filters, Adv. Comput. Math., 31, 215-236 (2009) · Zbl 1187.65154
[30] Jiang, Q. T., Wavelet bi-frames with uniform symmetry for curve multiresolution processing, J. Comput. Appl. Math., 235, 1653-1675 (2011) · Zbl 1204.65168
[31] Jiang, Q. T., Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing, Adv. Comput. Math., 34, 127-165 (2011) · Zbl 1216.65191
[32] Jiang, Q. T., Biorthogonal wavelets with 6-fold axial symmetry for hexagonal data and triangle surface multiresolution processing, Int. J. Wavelets Multiresolut. Inf. Process., 9 (2011) · Zbl 1243.42046
[33] Jiang, Q. T.; Oswald, P., Triangular \(\sqrt{3} \)-subdivision schemes: the regular case, J. Comput. Appl. Math., 156, 47-75 (2003) · Zbl 1022.65016
[34] A. Khodakovsky, P. Schröder, W. Sweldens, Progressive geometry compression, in: Proc. SIGGRAPH, 2000.; A. Khodakovsky, P. Schröder, W. Sweldens, Progressive geometry compression, in: Proc. SIGGRAPH, 2000.
[35] Lai, M.-J.; Stöckler, J., Construction of multivariate compactly supported tight wavelet frames, Appl. Comput. Harmon. Anal., 21, 324-348 (2006) · Zbl 1106.42028
[36] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, D. Dobkin, MAPS: Multiresolution adaptive parameterization of surfaces, in: Proc. SIGGRAPH 98, 1998, pp. 95-104.; A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, D. Dobkin, MAPS: Multiresolution adaptive parameterization of surfaces, in: Proc. SIGGRAPH 98, 1998, pp. 95-104.
[37] C. Loop, Smooth subdivision surfaces based on triangles, Masterʼs thesis, University of Utah, Department of Mathematics, Salt Lake City, 1987.; C. Loop, Smooth subdivision surfaces based on triangles, Masterʼs thesis, University of Utah, Department of Mathematics, Salt Lake City, 1987.
[38] J.M. Lounsbery, Multiresolution analysis for surfaces of arbitrary topological type, Ph.D. dissertation, University of Washington, Department of Mathematics, Seattle, 1994.; J.M. Lounsbery, Multiresolution analysis for surfaces of arbitrary topological type, Ph.D. dissertation, University of Washington, Department of Mathematics, Seattle, 1994.
[39] Lounsbery, J. M.; Derose, T. D.; Warren, J., Multiresolution analysis for surfaces of arbitrary topological type, ACM Trans. Graph., 16, 34-73 (1997)
[40] Romero, J.; Alexander, S.; Baid, S.; Jain, S.; Papadakis, M., The geometry and the analytic properties of isotropic multiresolution analysis, Adv. Comput. Math., 31, 283-328 (2009) · Zbl 1170.65109
[41] Ron, A.; Shen, Z. W., Affine systems in \(L_2(R^d)\): The analysis of the analysis operators, J. Funct. Anal., 148, 408-447 (1997) · Zbl 0891.42018
[42] Ron, A.; Shen, Z. W., Affine systems in \(L_2(R^d)\) II: Dual systems, J. Fourier Anal. Appl., 3, 617-637 (1997) · Zbl 0904.42025
[43] Ron, A.; Shen, Z. W., Compactly supported tight affine spline frames in \(L_2(R^d)\), Math. Comp., 67, 191-207 (1998) · Zbl 0892.42018
[44] Ron, A.; Shen, Z. W., Construction of compactly supported affine spline frames in \(L_2(R^d)\), (Lau, K. S., Advances in Wavelets (1998), Springer-Verlag: Springer-Verlag Singapore), 27-49
[45] Samavati, F. F.; Mahdavi-Amiri, N.; Bartels, R. H., Multiresolution representation of surface with arbitrary topology by reversing Doo subdivision, Comput. Graph. Forum, 21, 121-136 (2002)
[46] P. Schröder, W. Sweldens, Spherical wavelets: Efficiently representing functions on the sphere, in: Proc. SIGGRAPH 95, 1995, pp. 161-172.; P. Schröder, W. Sweldens, Spherical wavelets: Efficiently representing functions on the sphere, in: Proc. SIGGRAPH 95, 1995, pp. 161-172.
[47] Shen, L. X.; Papadakis, M.; Kakadiaris, I. A.; Konstantinidis, I.; Kouri, I.; Hoffman, D., Image denoising using a tight frame, IEEE Trans. Image Process., 15, 1254-1263 (2006)
[48] Sweldens, W., The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal., 3, 186-200 (1996) · Zbl 0874.65104
[49] Wang, H. W.; Qin, K. H.; Tang, K., Efficient wavelet construction with Catmull-Clark subdivision, Vis. Comput., 22, 874-884 (2006)
[50] Wang, H. W.; Qin, K. H.; Sun, H. Q., \( \sqrt{3} \)-subdivision-based biorthogonal wavelets, IEEE Trans. Vis. Comput. Graph., 13, 914-925 (2007)
[51] You, Y. L.; Kaveh, M., Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9, 1723-1730 (2000) · Zbl 0962.94011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.