×

Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition. (English) Zbl 1237.35069

This paper is concerned with existence of non-trivial weak solutions for quasilinear elliptic equations of the form \(-\text{div} A(x,\nabla u)=f(x,u)\) in \(\Omega\) subject to homogeneous Neumann boundary conditions. Here \(\Omega\) is a smooth and bounded domain in \(\mathbb R^N\), \(A:\overline \Omega\times\mathbb R^N\rightarrow\mathbb R^N\) is a strictly monotone mapping with respect to the second variable which satisfies some general assumptions without being necessarily \((p-1)\)-homogeneous. The differential operator considered by the authors includes the \(p\)-Laplace case. Under some assumptions on the data \(f\), the existence of one, two or three non-trivial weak solutions is proved. Particular attention is paid to the case \(f(x,u)=\alpha u^{p-1}_+-\beta u^{p-1}_{-}\). The proofs rely on variational techniques which combine mountain pass methods, deformation lemma and minimax principle with minimization, truncation, regularity and linking.

MSC:

35J62 Quasilinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J20 Variational methods for second-order elliptic equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Alif M., Omari P.: On a p-Laplace Neumann problem with asymptotically asymmetric perturbations. Nonlinear Anal. 51, 369–389 (2002) · Zbl 1157.35354 · doi:10.1016/S0362-546X(01)00835-5
[2] Arias M., Campos J., Gossez J.-P.: On the antimaximum principle and the Fučík spectrum for the Neumann p-Laplacian. Differ. Int. Equ. 13, 217–226 (2000) · Zbl 0979.35048
[3] Arias M., Campos J., Cuesta M., Gossez J.-P.: An asymmetric Neumann problem with weights. Ann. Inst. Henri Poincaré 25, 267–280 (2008) · Zbl 1138.35074 · doi:10.1016/j.anihpc.2006.07.006
[4] Binding P.A., Drábek P., Huang Y.X.: On Neumann boundary value problems for some quasilinear elliptic equations. Electron. J. Differ. Equ. 1997(5), 1–11 (1997) · Zbl 0886.35060
[5] Cammaroto F., Chinnì A., DiBella B.: Some multiplicity results for quasilinear Neumann problems. Arch. Math. 86, 154–162 (2006) · Zbl 1206.35127 · doi:10.1007/s00013-005-1425-8
[6] Casas E., Fernandez L.A.: A Green’s formula for quasilinear elliptic operators. J. Math. Anal. Appl. 142, 62–73 (1989) · Zbl 0704.35047 · doi:10.1016/0022-247X(89)90164-9
[7] Chang K.C.: Infinite-Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993) · Zbl 0779.58005
[8] Cuesta M., de Figueiredo D., Gossez J.-P.: The beginning of the Fučík spectrum for the p-Laplacian. J. Differ. Equ. 159, 212–238 (1999) · Zbl 0947.35068 · doi:10.1006/jdeq.1999.3645
[9] Damascelli L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. Henri Poincaré 15, 493–516 (1998) · Zbl 0911.35009 · doi:10.1016/S0294-1449(98)80032-2
[10] Dancer N., Perera K.: Some remarks on the Fučík spectrum of the p-Laplacian and critical groups. J. Math. Anal. Appl. 254, 164–177 (2001) · Zbl 0970.35056 · doi:10.1006/jmaa.2000.7228
[11] DiBenedetto E.: C 1+{\(\alpha\)} local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983) · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5
[12] Drábek P., Kufner A., Nicolosi F.: Quasilinear Elliptic Equations with Degenerations and Singularities, de Gruyter Series in Nonlinear Analysis and Applications, vol. 5. Walter de Gruyter & Co, Berlin (1997) · Zbl 0894.35002
[13] Fučík S.: Boundary value problems with jumping nonlinearities. Casopis Pest. Mat. 101, 69–87 (1976)
[14] Ghoussoub N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge, UK (1993) · Zbl 0790.58002
[15] Lê A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 64, 1057–1099 (2000) · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[16] Lieberman G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988) · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[17] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989) · Zbl 0676.58017
[18] Montenegro M.: Strong maximum principles for supersolutions of quasilinear elliptic equations. Nonlinear Anal. 37, 431–448 (1999) · Zbl 0930.35074 · doi:10.1016/S0362-546X(98)00057-1
[19] Motreanu D., Tanaka M.: Sign-changing and constant-sign solutions for p-Laplacian problems with jumping nonlinearities. J. Differ. Equ. 249, 3352–3376 (2010) · Zbl 1205.35137 · doi:10.1016/j.jde.2010.08.017
[20] Motreanu D., Motreanu V.V., Papageorgiou N.S.: Nonlinear Neumann problems near resonance. Indiana Univ. Math. J. 58, 1257–1279 (2009) · Zbl 1168.35018 · doi:10.1512/iumj.2009.58.3565
[21] Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple constant sign and nodal solutions for Nonlinear Neumann eigenvalue problems. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) (to appear) · Zbl 1234.35169
[22] Ricceri B.: Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian. Bull. Lond. Math. Soc. 33, 331–340 (2001) · Zbl 1035.35031 · doi:10.1017/S0024609301008001
[23] Tanaka M.: Existence of a non-trivial solution for the p-Laplacian equation with Fučík type resonance at infinity. Nonlinear Anal. 70, 2165–2175 (2009) · Zbl 1170.35426 · doi:10.1016/j.na.2008.02.117
[24] Tanaka M.: Existence of a non-trivial solution for the p-Laplacian equation with Fučík type resonance at infinity. II. Nonlinear Anal. 71, 3018–3030 (2009) · Zbl 1177.35099 · doi:10.1016/j.na.2009.01.186
[25] Tanaka M.: Existence of constant sign solutions for the p-Laplacian problems in the resonant case with respect to Fučík spectrum. SUT J. Math. 45(2), 149–166 (2009) · Zbl 1196.35115
[26] Tanaka M.: Existence of a non-trivial solution for the p-Laplacian equation with Fučík type resonance at infinity. III. Nonlinear Anal. 72, 507–526 (2010) · Zbl 1181.35123 · doi:10.1016/j.na.2009.06.096
[27] Trudinger N.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967) · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[28] Wu X., Tan K.-K.: On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations. Nonlinear Anal. 65, 1334–1347 (2006) · Zbl 1109.35047 · doi:10.1016/j.na.2005.10.010
[29] Zhang Q.: A strong maximum principle for differential equations with nonstandard p(x)-growth conditions. J. Math. Anal. Appl. 312, 24–32 (2005) · Zbl 1162.35374 · doi:10.1016/j.jmaa.2005.03.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.