×

Cubic semisymmetric graphs of order \(8p ^{3}\). (English) Zbl 1237.05052

Summary: A regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive. By J. Folkman [J. Comb. Theory 3, 215–232 (1967; Zbl 0158.42501)], there is no semisymmetric graph of order \(2p\) or \(2p ^{2}\) for a prime \(p\), and by A. Malnič et al. [Discrete Math. 307, No. 17–18, 2156–2175 (2007; Zbl 1136.05026)], there exists a unique cubic semisymmetric graph of order \(2p ^{3}\), the so called Gray graph of order 54. In this paper, it is shown that there is no connected cubic semisymmetric graph of order \(4p ^{3}\) and that there exists a unique cubic semisymmetric graph of order \(8p ^{3}\), which is a \(\mathbb Z_{2} \times \mathbb Z_{2}\)-covering of the Gray graph.

MSC:

05C10 Planar graphs; geometric and topological aspects of graph theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures

Software:

Magma
Full Text: DOI

References:

[1] Alaeiyan M, Ghasemi M. Cubic edge-transitive graphs of order 8p 2, Bull Austral Math Soc, 2008, 77: 315–323 · Zbl 1140.05032
[2] Biggs N. Three remarkable graphs. Can J Math, 1973, 25: 397–411 · Zbl 0256.05114 · doi:10.4153/CJM-1973-040-1
[3] Bosma W, Cannon C, Playoust C. The MAGMA algebra system. I: The user language. J Symbol Comput, 1997, 24: 235–265 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[4] Bouwer I Z. An edge but not vertex transitive cubic graph. Bull Can Math Soc, 1968, 11: 533–535 · Zbl 0182.58102 · doi:10.4153/CMB-1968-063-0
[5] Bouwer I Z. On edge but not vertex transitive regular graphs. J Combin Theory Ser B, 1972, 12: 32–40 · Zbl 0228.05114 · doi:10.1016/0095-8956(72)90030-5
[6] Cheng Y, Oxley J. On weakly symmetric graphs of order twice a prime. J Combin Theory Ser B, 1987, 42: 196–211 · Zbl 0583.05032 · doi:10.1016/0095-8956(87)90040-2
[7] Conder M D E, Dobcsányi P. Trivalent symmetric graphs on up to 768 vertices. J Combin Math Combin Comput, 2002, 40: 41–63 · Zbl 0996.05069
[8] Conder M D E, Malnič A, Marušič D, et al, A census of semisymmetric cubic graphs on up to 768 vertices. J Algebr Combin, 2006, 23: 255–294 · Zbl 1089.05032 · doi:10.1007/s10801-006-7397-3
[9] Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Group. Oxford: Clarendon Press, 1985 · Zbl 0568.20001
[10] Du S F, Xu M Y. A classification of semisymmetric graphs of order 2pq. Communication in Algebra, 2000, 28: 2685–2715 · Zbl 0944.05051 · doi:10.1080/00927870008826987
[11] Feng Y Q, Kwak J H. Cubic symmetric graphs of order twice an odd prime-power. J Austral Math Soc, 2006, 81: 153–164 · Zbl 1108.05050 · doi:10.1017/S1446788700015792
[12] Feng Y Q, Kwak J H. Cubic symmetric graphs of order a small number times a prime or a prime square. J Combin Theory Ser B, 2007, 97: 627–646 · Zbl 1118.05043 · doi:10.1016/j.jctb.2006.11.001
[13] Feng Y Q, Kwak J H, Wang K S. Classifying cubic symmetric graphs of order 8p or 8p 2. Europ J Combin, 2005, 26: 1033–1052 · Zbl 1071.05043 · doi:10.1016/j.ejc.2004.06.015
[14] Feng Y Q, Kwak J H, Xu M Y. Cubic s-regular graphs of order 2p 3. J Graph Theory, 2006, 52: 341–352 · Zbl 1100.05073 · doi:10.1002/jgt.20169
[15] Feng Y Q, Zhou J X. A note on semisymmetric graphs. Discrete Math, 2008, 308: 4031–4035 · Zbl 1147.05039 · doi:10.1016/j.disc.2007.07.096
[16] Folkman J. Regular line-symmetric graphs. J Combin Theory, 1967, 3: 215–232 · Zbl 0158.42501 · doi:10.1016/S0021-9800(67)80069-3
[17] Gorenstein D. Finite Simple Groups. New York: Plenum Press, 1982 · Zbl 0483.20008
[18] Gross J L, Tucker T W. Generating all graph coverings by permutation voltage assignment. Discrete Math, 1977, 18: 273–283 · Zbl 0375.55001 · doi:10.1016/0012-365X(77)90131-5
[19] Iofinova M E, Ivanov A A. Biprimitive cubic graphs, Investigation in Algebraic Theory of Combinatorial Objects (in Russian). Moscow: Institute for System Studies, 1985, 123–134
[20] Ivanov A V. On edge but not vertex transitive regular graphs. Ann Discrete Math, 1987, 34: 273–286 · Zbl 0629.05040
[21] Klin M L. On edge but not vertex transitive regular graphs. In: Colloq-Math Soc Janos Bolyai, 25: Algebraic Methods in Graph Theory, Szeged (Hungary), Budapest, 1981, 399–403
[22] Lazebnik F, Viglione R. An infinite series of regular edge but not vertex-transitive graphs. J Graph Theory, 2002, 41: 249–258 · Zbl 1012.05083 · doi:10.1002/jgt.10064
[23] Lorimer P. Trivalent symmetric graphs of order at most 120. Europ J Combin, 1984, 5: 163–171 · Zbl 0537.05026 · doi:10.1016/S0195-6698(84)80030-X
[24] Lu Z P, Wang C Q, Xu M Y. On semisymmetric cubic graphs of order 6p 2. Sci China Ser A, 2004, 47: 11–17 · Zbl 1217.05107
[25] Malnič A. Group actions, covering and lifts of automorphisms. Discrete Math, 1998, 182: 203–218 · Zbl 0893.57001 · doi:10.1016/S0012-365X(97)00141-6
[26] Malnič A. Marušič D, Miklavič S, et al. Semisymmetric elementary abelian covers of the Möbius-Kantor graph. Discrete Math, 2007, 3307: 2156–2175 · Zbl 1136.05026 · doi:10.1016/j.disc.2006.10.008
[27] Malnič A, Marušič D, Potočnik P. Elementary abelian covers of graphs. J Algebraic Combin, 2004, 20: 71–97 · Zbl 1065.05050 · doi:10.1023/B:JACO.0000047294.42633.25
[28] Malnič A, Marušič D, Potočnik P, et al. An infinite family of cub edge-but not vertex-transitive graphs. Discrete Math, 2004, 280: 133–148 · Zbl 1041.05039 · doi:10.1016/j.disc.2003.07.004
[29] Malnič A, Marušič D, Wang C Q. Cubic edge-transitive graphs of order 2p 3. Discrete Math, 2004, 274: 187–198 · Zbl 1032.05063 · doi:10.1016/S0012-365X(03)00088-8
[30] Marušič D. Constructing cubic edge but not vertex-transitive graphs. J Graph Theory, 2000, 35: 152–160 · Zbl 1021.05050 · doi:10.1002/1097-0118(200010)35:2<152::AID-JGT7>3.0.CO;2-I
[31] Marušič D, Potočnik P. Semisymmetry of generalized Folkman graphs. Europ J Combin, 2001, 22: 333–349 · Zbl 0979.05056 · doi:10.1006/eujc.2000.0473
[32] Parker C W. Semisymmetric cubic graphs of twice odd order. Europ J Combin, 2007, 2: 572–591 · Zbl 1109.05054 · doi:10.1016/j.ejc.2005.06.007
[33] Robinson D J. A Course in the Theory of Groups. New York: Springer-Verlag, 1996
[34] Škoviera M. A construction to the theory of voltage groups. Discrete Math, 1986, 61: 281–292 · Zbl 0594.05029 · doi:10.1016/0012-365X(86)90099-3
[35] Titov V K. On symmetry in graphs, Voprocy Kibernetiki 9150, Proc of II all Unio Seminar on Combinatorial Mathematics (in Russian), part 2, Nauka. Moscow, 76–109, 1975
[36] Wilson S. A worthy family of semisymmetric graphs. Discrete Math, 2003, 271: 283–294 · Zbl 1021.05048 · doi:10.1016/S0012-365X(03)00048-7
[37] Xu M Y. Half-transitive graphs of prime-cube order. J Algebraic Combin, 1992, 1: 275–282 · Zbl 0786.05044 · doi:10.1023/A:1022440002282
[38] Zhou J X. Cubic symmetric graphs of order 4p 3. Ars Combin, in press · Zbl 1340.05131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.