×

Next-nearest-neighbor-tunneling-induced symmetry breaking of Hofstadter’s butterfly spectrum for ultracold atoms on the honeycomb lattice. (English) Zbl 1236.82152

Summary: We study the spectrum of ultracold atoms on the honeycomb lattice under a constant effective magnetic field. In the tight-binding approximation, we derived the generalized Harper’s equations and numerically calculate the spectrum, which has a fractal structure. For the cases with and without the next-nearest-neighbor tunneling, the graphs of spectra have different symmetries. Comparing the symmetries of the graphs of spectra, we find that next-nearest-neighbor tunneling induces symmetry breaking of the graph of spectrum.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
82D15 Statistical mechanics of liquids
81V45 Atomic physics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
28A80 Fractals
81R40 Symmetry breaking in quantum theory
Full Text: DOI

References:

[1] Azbel, M. Y., Sov. Phys. JETP, 19, 634 (1964)
[2] Harper, P. G., Proc. Phys. Soc. London A, 68, 874 (1995)
[3] Hofstadter, D. R., Phys. Rev. B, 14, 2239 (1976)
[4] Jaksch, D.; Bruder, C.; Cirac, J.; Gardiner, C.; Zoller, P., Phys. Rev. Lett., 81, 3108 (1998)
[5] Greiner, M.; Mandel, O.; Esslinger, T.; Hansch, T.; Bloch, I., Nature, 415, 39 (2002)
[6] Lewenstein, M.; Sanpera, A.; Ahufinger, V.; Damski, B.; Sen, A.; Sen, U., Adv. Phys., 56, 243 (2007), and references therein
[7] Bretin, V.; Stock, S.; Seurin, Y.; Dalibard, J., Phys. Rev. Lett., 92, 050403 (2004)
[8] Schweikhard, V.; Coddington, I.; Engels, P.; Mogendorff, V. P.; Cornell, E. A., Phys. Rev. Lett., 92, 040404 (2004)
[9] Baranov, M. A.; Osterloh, K.; Lewenstein, M., Phys. Rev. Lett., 94, 070404 (2005)
[10] Jaksch, D.; Zoller, P., New J. Phys., 5, 56 (2003)
[11] Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M., Phys. Rev. Lett., 95, 010403 (2005)
[12] Juzeliūnas, G.; Öhberg, P., Phys. Rev. Lett., 93, 033602 (2004)
[13] Juzeliūnas, G.; Öhberg, P.; Ruseckas, J.; Klein, A., Phys. Rev. A, 71, 053614 (2005)
[14] Juzeliūnas, G.; Ruseckas, J.; Öhberg, P.; Fleischhauer, M., Phys. Rev. A, 73, 025602 (2006)
[15] Ruseckas, J.; Juzeliūnas, G.; Öhberg, P.; Fleischhauer, M., Phys. Rev. Lett., 95, 010404 (2005)
[16] Lin, Y.-J.; Compton, R. L.; Perry, A. R.; Phillips, W. D.; Porto, J. V.; Spielman, I. B., Phys. Rev. Lett., 102, 130401 (2009)
[17] Hatsugai, Y.; Fukui, T.; Aoki, H., Phys. Rev. B, 74, 205414 (2006)
[18] Hasegawa, Y.; Kohmoto, M., Phys. Rev. B, 74, 155415 (2006)
[19] Nemec, N.; Cuniberti, G., Phys. Rev. B, 74, 165411 (2006)
[20] Grynberg, G.; Robilliard, C., Phys. Rep., 355, 335 (2001)
[21] Duan, L.-M.; Demler, E.; Lukin, M. D., Phys. Rev. Lett., 91, 090402 (2003)
[22] Stamper-Kurn, D. M.; Chikkatur, A. P.; Görlitz, A.; Inouye, S.; Gupta, S.; Pritchard, D. E.; Ketterle, W., Phys. Rev. Lett., 83, 2876 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.