×

Influence of applied in-plane strain on transverse thermal conductivity of \(0^\circ /90^\circ \) and plain weave ceramic matrix composites. (English) Zbl 1236.74070

Summary: A computationally economic finite-element-based stress analysis model, developed previously by the authors, has been extended to predict the thermal behaviour of ceramic matrix composites with strain-induced damage. The finite element analysis utilises a solid element to represent a homogenised orthotropic medium of a heterogeneous uni-directional tow. The non linear multi-axial strain dependent thermal behaviour has been discretised by multi-linear curves, which have been implemented by a user defined subroutine, USDFLD, in the commercial finite element package, ABAQUS. The model has been used to study the performance of two CMC composites: a SiC (Nicalon) fibre-calcium aluminosilicate (CAS) matrix, \(0^\circ /90^\circ \) cross-ply laminate Nicalon-CAS; and, carbon fibre-dual carbon-SiC matrix (C/C-SiC), plain weave laminate DLR-XT. The global through-thickness thermal conductivity degradation with composite uni-axial strain has been predicted. Comparisons have been made between the predictions and experimental data for both materials, and good agreement has been achieved. For the Nicalon-CAS \(0^\circ /90^\circ \) cross-ply the dominant mechanism of thermal conductivity degradation is combined fibre failure and associated wake debonding; and, for the DLR-XT plain weave the same mechanisms act in combination with out-of-plane shear failure.

MSC:

74F05 Thermal effects in solid mechanics
74E30 Composite and mixture properties
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

ABAQUS
Full Text: DOI

References:

[1] Argyris, J.; Tenek, L.; Oberg, F.: A multilayer composite triangular element for steady-state conduction/convection/radiation heat transfer in complex shells, Comput. meth. Appl. mech. Eng. 120, 271-301 (1995) · Zbl 0852.73055 · doi:10.1016/0045-7825(94)00775-I
[2] Blacklock, M., Hayhurst, D.R., 2009. Initial elastic properties of ceramic matrix composite fibre tows. Research report No. DMM. 09.07, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, UK. · Zbl 1186.74036
[3] Blacklock, M., Hayhurst, D.R., in press. Multi-axial failure of ceramic matrix composite fibre tows. J. Appl. Mech. · Zbl 1186.74036
[4] Del Puglia, P.; Sheikh, M. A.; Hayhurst, D. R.: Classification and quantification of initial porosity in a CMC laminate, Compos. part A: appl. Sci. manuf. 35, 223-230 (2004)
[5] Del Puglia, P.; Sheikh, M. A.; Hayhurst, D. R.: Modelling the degradation of thermal transport in a CMC material due to three difference classes of porosity, Model. simul. Mater. sci. Eng. 12, 357-372 (2004)
[6] Del Puglia, P.; Sheikh, M. A.; Hayhurst, D. R.: Thermal transport property prediction of a CMC laminate from base material properties and manufacturing porosities, Proc. R. Soc. A 461, 3575-3597 (2005)
[7] Evans, A. G.; Naslain, R.: High-temperature ceramic-matrix composites, Ceram. trans. 57, 381-388 (1995)
[8] Fourier, J.: Theorie analytique de la chaleur, (1822) · JFM 15.0954.01
[9] Harris, B.; Habib, F. A.; Cooke, R. G.: Matrix cracking and the mechanical behaviour of sic – CAS composites, Proc. R. Soc. A 437, 109-131 (1992)
[10] Hayhurst, D. R.; Leckie, F. A.; Evans, A.: Component design-based model for deformation and rupture of tough fibre-reinforced ceramic matrix composites, Proc. R. Soc. lond. A. 434, 369-381 (1991)
[11] Klett, J. W.; Ervin, V. J.; Edie, D. D.: Finite-element modelling of heat transfer in carbon/carbon composites, Compos. sci. Technol. 59, 593-607 (1999)
[12] Lu, T. J.; Hutchinson, J. W.: Effect of matrix cracking on the overall thermal conductivity of fibre-reinforced composites, High-temperature structural materials, 177-192 (1996)
[13] Marshall, D. B.; Cox, B. N.: Integral textile ceramic structures, Annu. rev. Mater. res. 38, 425-443 (2008)
[14] Mcglockton, M. A.; Cox, B. N.; Mcmeeking, R. M.: A binary model of textile composites. III: high failure strain and work of fracture in 3D weaves, Acta metall. Mater. 51, 1573-1600 (2003) · Zbl 1049.74531 · doi:10.1016/S0022-5096(03)00038-3
[15] Sheikh, M. A.; Taylor, S. C.; Hayhurst, D. R.; Taylor, R.: Microstructural finite element modelling of a ceramic matrix composite to predict experimental measurements of its macro thermal properties, Model. simul. Mater. sci. Eng. 9, 7-23 (2001)
[16] Sheikh, M. A.; Taylor, S. C.; Hayhurst, D. R.; Taylor, R.: Experimental investigation of the effect of mechanical loading on thermal transport in ceramic matrix composites, J. multiscale model. 1, No. 3 – 4, 403-431 (2009)
[17] SIMULIA., 2006 ABAQUS user’s manual. Version 6.6. Providence, Rhode Island, US.
[18] Tang, C.; Blacklock, M.; Hayhurst, D. R.: Uni-axial stress – strain response and thermal conductivity degradation of ceramic matrix composite fibre tows, Proc. R. Soc. A 465, 2849-2876 (2009) · Zbl 1186.74036 · doi:10.1098/rspa.2009.0276
[19] Tang, C., Blacklock, M., Hayhurst, D.R., in press. Stress-strain response and thermal conductivity degradation of ceramic matrix composite fibre tows in 0 – 90^\circ  uni-directional and woven composites. J. Compos. Mater. · Zbl 1186.74036
[20] Tang, C., Hayhurst, D.R., in press. Predictions of thermo-mechanical behaviour of a Nicalon-CAS 0 – 90^\circ  ceramic matrix composite from constituent materials properties. J. Compos. Mater.
[21] Weibull, W., 1939. A statistical theory of strength of materials. In: Proceedings of Royal Swedish Institute, Stockholm, p. 151.
[22] Whittaker, A. J.; Taylor, R.: Thermal transport properties of carbon-carbon fibre composites. III: mathematical modelling, Proc. R. Soc. A 430, No. 1878, 199-211 (1990)
[23] White, J. L. E.; Knutsson, A.: Theory of thermal conductivity, heat conduction and convective heat transfer in fiber filled polymer composites, Polymer eng. Rev. 2, No. 1, 71-82 (1982)
[24] Yang, Q.; Cox, B.: Spatially averaged local strain in textile composites via the binary model formulation, J. eng. Mater. technol. Trans. ASME 125, 418-425 (2003)
[25] Zhang, D.; Hayhurst, D. R.: Stress – strain and fracture behaviour of 0/90 and plain weave ceramic matrix composites from tow multi-axial properties, Int. J. Solids struct. 47, No. 21, 2958-2969 (2010) · Zbl 1196.74035 · doi:10.1016/j.ijsolstr.2010.06.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.