×

Heavy tails of a Lévy process and its maximum over a random time interval. (English) Zbl 1236.60046

Summary: Let \(\{X _{t },\;t \geqslant 0\}\) be a Lévy process with Lévy measure \(\nu \) on \(( - \infty ,\infty )\), and let \(\tau \) be a nonnegative random variable independent of \(\{X _{t }, t \geqslant 0\}\). We are interested in the tail probabilities of \(X _{\tau }\) and \(X _{(\tau )} = \sup_{0\leqslant t \leqslant \tau } X _{t }\). For various cases, under the assumption that either the Lévy measure \(\nu \) or the random variable \(\tau \) have a heavy right tail, we prove that both Pr\((X _{\tau } > x)\) and Pr\((X _{(\tau )} > x)\) are asymptotic to \(\operatorname{E}\tau \nu ((x, \infty ))\) + Pr\((\tau > x/(0 \vee \operatorname{E}X _{1}))\) as \(x \rightarrow \infty \), where Pr\((\tau > x/0) = 0\) by convention.

MSC:

60G51 Processes with independent increments; Lévy processes
60E07 Infinitely divisible distributions; stable distributions
60F10 Large deviations
60G70 Extreme value theory; extremal stochastic processes
Full Text: DOI

References:

[1] Albin J M P, Sundén M. On the asymptotic behaviour of Lévy processes. I. Subexponential and exponential processes. Stochastic Process Appl, 2009, 119: 281–304 · Zbl 1156.60029 · doi:10.1016/j.spa.2008.02.004
[2] Aleškevičien\.e A, Leipus R, Šiaulys J. Tail behavior of random sums under consistent variation with applications to the compound renewal risk model. Extremes, 2008, 11: 261–279 · Zbl 1164.60006 · doi:10.1007/s10687-008-0057-3
[3] Barndorff-Nielsen O E, Mikosch T, Resnick S I. Lévy Processes. Boston: Birkhäuser Boston, Inc, 2001
[4] Berman S M. The supremum of a process with stationary independent and symmetric increments. Stochastic Process Appl, 1986, 23: 281–290 · Zbl 0612.60063 · doi:10.1016/0304-4149(86)90041-4
[5] Bertoin J. Lévy Processes. Cambridge: Cambridge University Press, 1996
[6] Bingham N H. Lévy processes and self-decomposability in finance. Probab Math Statist, 2006, 26: 367–378 · Zbl 1115.60048
[7] Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987
[8] Braverman M. Suprema and sojourn times of Lévy processes with exponential tails. Stochastic Process Appl, 1997, 68: 265–283 · Zbl 0915.60050 · doi:10.1016/S0304-4149(97)00031-8
[9] Braverman M. Suprema of compound Poisson processes with light tails. Stochastic Process Appl, 2000, 90: 145–156 · Zbl 1046.60049 · doi:10.1016/S0304-4149(00)00039-9
[10] Braverman M. Tail probabilities of subadditive functionals on stable processes with continuous and discrete time. Stochastic Process Appl, 2004, 112: 157–183 · Zbl 1081.60031 · doi:10.1016/j.spa.2004.02.001
[11] Braverman M. On a class of Lévy processes. Statist Probab Lett, 2005, 75: 179–189 · Zbl 1103.60021 · doi:10.1016/j.spl.2005.05.023
[12] Braverman M, Mikosch T, Samorodnitsky G. Tail probabilities of subadditive functionals of Lévy processes. Ann Appl Probab, 2002, 12: 69–100 · Zbl 1035.60045 · doi:10.1214/aoap/1015961156
[13] Braverman M, Samorodnitsky G. Functionals of infinitely divisible stochastic processes with exponential tails. Stochastic Process Appl, 1995, 56: 207–231 · Zbl 0819.60020 · doi:10.1016/0304-4149(94)00074-4
[14] Cont R, Tankov P. Financial Modelling with Jump Processes. Boca Raton: Chapman & Hall/CRC, 2004 · Zbl 1052.91043
[15] Denisov D, Foss S, Korshunov D. Tail asymptotics for the supremum of a random walk when the mean is not finite. Queueing Syst, 2004, 46: 15–33 · Zbl 1056.90028 · doi:10.1023/B:QUES.0000021140.87161.9c
[16] Denisov D, Foss S, Korshunov D. Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli, 2010, 16: 971–994 · Zbl 1208.60041 · doi:10.3150/10-BEJ251
[17] Embrechts P, Goldie C M, Veraverbeke N. Subexponentiality and infinite divisibility. Z Wahrsch Verw Gebiete, 1979, 49: 335–347 · Zbl 0397.60024 · doi:10.1007/BF00535504
[18] Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag, 1997 · Zbl 0873.62116
[19] Faÿ G, González A B, Mikosch T, et al. Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst, 2006, 54: 121–140 · Zbl 1119.60075 · doi:10.1007/s11134-006-9348-z
[20] Foss S, Palmowski Z, Zachary S. The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk. Ann Appl Probab, 2005, 15: 1936–1957 · Zbl 1083.60036 · doi:10.1214/105051605000000269
[21] Foss S, Zachary S. The maximum on a random time interval of a random walk with long-tailed increments and negative drift. Ann Appl Probab, 2003, 13: 37–53 · Zbl 1045.60039 · doi:10.1214/aoap/1042765662
[22] Klüppelberg C. Subexponential distributions and integrated tails. J Appl Probab, 1988, 25: 132–141 · Zbl 0651.60020 · doi:10.2307/3214240
[23] Korshunov D A. Large deviation probabilities for the maxima of sums of independent summands with a negative mean and a subexponential distribution. Theory Probab Appl, 2003, 46: 355–365 · Zbl 1005.60060 · doi:10.1137/S0040585X97979019
[24] Kyprianou A E. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Berlin: Springer-Verlag, 2006 · Zbl 1104.60001
[25] Maulik K, Zwart B. Tail asymptotics for exponential functionals of Lévy processes. Stochastic Process Appl, 2006, 116: 156–177 · Zbl 1090.60046 · doi:10.1016/j.spa.2005.09.002
[26] Ng K W, Tang Q. Asymptotic behavior of tail and local probabilities for sums of subexponential random variables. J Appl Probab, 2004, 41: 108–116 · Zbl 1057.60049 · doi:10.1239/jap/1077134671
[27] Ng K W, Tang Q, Yang H. Maxima of sums of heavy-tailed random variables. Astin Bull, 2002, 32: 43–55 · Zbl 1098.60505 · doi:10.2143/AST.32.1.1013
[28] Pakes A G. Convolution equivalence and infinite divisibility. J Appl Probab, 2004, 41: 407–424 · Zbl 1051.60019 · doi:10.1239/jap/1082999075
[29] Pakes A G. Convolution equivalence and infinite divisibility: corrections and corollaries. J Appl Probab, 2007, 44: 295–305 · Zbl 1132.60015 · doi:10.1239/jap/1183667402
[30] Robert C Y, Segers J. Tails of random sums of a heavy-tailed number of light-tailed terms. Insurance Math Econom, 2008, 43: 85–92 · Zbl 1154.60032 · doi:10.1016/j.insmatheco.2007.10.001
[31] Rosiński J, Samorodnitsky G. Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann Probab, 1993, 21: 996–1014 · Zbl 0776.60049 · doi:10.1214/aop/1176989279
[32] Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999
[33] Schoutens W. Lévy Processes in Finance. New York: Wiley, 2003
[34] Shimura T, Watanabe T. Infinite divisibility and generalized subexponentiality. Bernoulli, 2005, 11: 445–469 · Zbl 1081.60016 · doi:10.3150/bj/1120591184
[35] Tang Q, Tsitsiashvili G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Process Appl, 2003, 108: 299–325 · Zbl 1075.91563
[36] Tang Q, Yan J. A sharp inequality for the tail probabilities of sums of i.i.d. r.v.’s with dominatedly varying tails. Sci China Ser A, 2002, 45: 1006–1011 · Zbl 1099.60501 · doi:10.1007/BF02879983
[37] Watanabe T. Sample function behavior of increasing processes of class L. Probab Theory Related Fields, 1996, 104: 349–374 · Zbl 0849.60036 · doi:10.1007/BF01213685
[38] Willekens E. On the supremum of an infinitely divisible process. Stochastic Process Appl, 1987, 26: 173–175 · Zbl 0633.60025 · doi:10.1016/0304-4149(87)90058-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.