×

Towards a \(q\)-analogue of the Kibble-Slepian formula in 3 dimensions. (English) Zbl 1236.33035

Author’s abstract: We study a generalization of the Kibble-Slepian (KS) expansion formula in 3 dimensions. The generalization is obtained by replacing the Hermite polynomials by the \(q\)-Hermite ones. If such a replacement would lead to non-negativity for all allowed values of parameters and for all values of variables ranging over certain Cartesian product of compact intervals then we would deal with a generalization of 3-dimensional Normal distribution. We show that this is not the case. Neverthless, we indicate other applications of so-generalized KS formula. Namely, we use it to sum certain kernels built of the Al-Salam-Chihara polynomials for the cases that were not considered by other authors. One of such kernels sums up to Askey-Wilson density disclosing its new, interesting properties. In particular we are able to obtain a generalization of the 2-dimensional Poisson-Mehler formula. We also pose several open questions.

MSC:

33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] Al-Salam, W. A.; Ismail, Mourad E. H., \(q\)-Beta integrals and the \(q\)-Hermite polynomials, Pacific J. Math., 135, 2, 209-221 (1988), MR0968609 (90c:33001) · Zbl 0658.33002
[2] Andrews, George E.; Askey, Richard; Roy, Ranjan, Special Functions (1999), Cambridge Univ. Press · Zbl 0920.33001
[3] Askey, Richard, Continuous \(q\)-Hermite polynomials when \(q > 1, (q\)-Series and Partitions. \(q\)-Series and Partitions, Minneapolis, MN, \(1988. q\)-Series and Partitions. \(q\)-Series and Partitions, Minneapolis, MN, 1988, IMA Vol. Math. Appl., vol. 18 (1989), Springer: Springer New York), 151-158, MR1019849 (90h:33019) · Zbl 0694.33006
[4] Askey, Richard; Ismail, Mourad, Recurrence relations, continued fractions, and orthogonal polynomials, Mem. Amer. Math. Soc., 49, 300 (1984), iv+108 pp. MR0743545 (85g:33008) · Zbl 0548.33001
[5] Askey, Richard A.; Rahman, Mizan; Suslov, Sergeĭ K., On a general \(q\)-Fourier transformation with nonsymmetric kernels, J. Comput. Appl. Math., 68, 1-2, 25-55 (1996), MR1418749 (98m:42033) · Zbl 0871.33008
[6] Bożejko, Marek; Kümmerer, Burkhard; Speicher, Roland, \(q\)-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys., 185, 1, 129-154 (1997), MR1463036 (98h:81053) · Zbl 0873.60087
[7] Bressoud, D. M., A simple proof of Mehlerʼs formula for \(q\)-Hermite polynomials, Indiana Univ. Math. J., 29, 4, 577-580 (1980), MR0578207 (81f:33009) · Zbl 0411.33010
[8] Bryc, Włodzimierz, Stationary random fields with linear regressions, Ann. Probab., 29, 1, 504-519 (2001), MR1825162 (2002d:60014) · Zbl 1014.60013
[9] Bryc, Włodzimierz; Matysiak, Wojciech; Szabłowski, Paweł J., Probabilistic aspects of Al-Salam-Chihara polynomials, Proc. Amer. Math. Soc., 133, 4, 1127-1134 (2005), (electronic). MR2117214 (2005m:33033) · Zbl 1074.33015
[10] Carlitz, L., Some polynomials related to theta functions, Ann. Mat. Pura Appl. (4), 41, 359-373 (1956), MR0078510 (17,1205e) · Zbl 0071.06202
[11] Carlitz, L., Generating functions for certain \(Q\)-orthogonal polynomials, Collect. Math., 23, 91-104 (1972), MR0316773 (47 #5321) · Zbl 0273.33012
[12] Chen, William Y. C.; Saad, Husam L.; Sun, Lisa H., The bivariate Rogers-Szegő polynomials, J. Phys. A, 40, 23, 6071-6084 (2007), MR2343510 (2008k:33064) · Zbl 1119.05011
[13] Floreanini, Roberto; LeTourneux, Jean; Vinet, Luc, More on the \(q\)-oscillator algebra and \(q\)-orthogonal polynomials, J. Phys. A, 28, 10, L287-L293 (1995), MR1343867 (96e:33043) · Zbl 0859.33020
[14] Floreanini, Roberto; LeTourneux, Jean; Vinet, Luc, Symmetry techniques for the Al-Salam-Chihara polynomials, J. Phys. A, 30, 9, 3107-3114 (1997), MR1456902 (98k:33036) · Zbl 0923.33011
[15] Ismail, Mourad E. H., Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia Math. Appl., vol. 98 (2005), Cambridge University Press: Cambridge University Press Cambridge, xviii+706 pp. ISBN 978-0-521-78201-2; 0-521-78201-5. With two chapters by Walter Van Assche. With a foreword by Richard A. Askey. MR2191786 (2007f:33001) · Zbl 1072.33014
[16] Ismail, Mourad E. H.; Stanton, Dennis, \(q\)-Integral and moment representations for \(q\)-orthogonal polynomials, Canad. J. Math., 54, 4, 709-735 (2002), MR1913916 (2003k:33024) · Zbl 1009.33015
[17] Ismail, Mourad E. H.; Rahman, Mizan; Dennis, Stanton, Quadratic \(q\)-exponentials and connection coefficient problems, Proc. Amer. Math. Soc., 127, 10, 2931-2941 (1999), MR1621949 (2000a:33027) · Zbl 0934.33025
[18] Kibble, W. F., An extension of a theorem of Mehlerʼs on Hermite polynomials, Proc. Cambridge Philos. Soc., 41, 12-15 (1945), MR0012728 (7,65f) · Zbl 0060.19602
[19] Slepian, David, On the symmetrized Kronecker power of a matrix and extensions of Mehlerʼs formula for Hermite polynomials, SIAM J. Math. Anal., 3, 606-616 (1972), MR0315173 (47 #3722) · Zbl 0222.33016
[20] Szabłowski, Paweł J., Expansions of one density via polynomials orthogonal with respect to the other, J. Math. Anal. Appl., 383, 35-54 (2011) · Zbl 1232.33019
[21] Szabłowski, Paweł J., On the structure and probabilistic interpretation of Askey-Wilson densities and polynomials with complex parameters, J. Funct. Anal., 262, 635-659 (2011), MR2799574 · Zbl 1222.33016
[22] P.J. Szabłowski, On summable form of Poisson-Mehler kernel for big \(q\) http://arxiv.org/abs/1011.1848; P.J. Szabłowski, On summable form of Poisson-Mehler kernel for big \(q\) http://arxiv.org/abs/1011.1848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.