×

Moduli space of stable quotients and wall-crossing phenomena. (English) Zbl 1236.14049

The author investigates wall-crossing phenomena of several compactifications of the moduli spaces of holomorphic maps from Riemann surfaces to the Grassmannian. More explicitly, the author introduces the notion of \(\epsilon\)-stable quotients for a positive real number \(\epsilon\), and proves that the moduli space of \(\epsilon\)-stable quotients is a proper Deligne-Mumford stack over \(\mathbb{C}\) with perfect obstruction theory. The author also proves that stable quotients and stable maps are related by a wall-crossing phenomena.
A discussion of Gromov-Witten type invariants associated to \(\epsilon\)-stable quotients and their behavior under wall-crossing can be found in this article.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14H60 Vector bundles on curves and their moduli

References:

[4] doi:10.1007/s00222-002-0279-y · Zbl 1024.14015 · doi:10.1007/s00222-002-0279-y
[5] doi:10.1017/CBO9780511662560 · doi:10.1017/CBO9780511662560
[6] doi:10.2307/1971369 · Zbl 0592.14011 · doi:10.2307/1971369
[7] doi:10.1142/9789812799821_0006 · doi:10.1142/9789812799821_0006
[9] doi:10.1090/S0894-0347-96-00190-7 · Zbl 0865.14017 · doi:10.1090/S0894-0347-96-00190-7
[10] doi:10.1016/S0001-8708(02)00058-0 · Zbl 1072.14014 · doi:10.1016/S0001-8708(02)00058-0
[11] doi:10.1006/aima.1997.1627 · Zbl 0945.14031 · doi:10.1006/aima.1997.1627
[12] doi:10.1007/s002220050293 · Zbl 0953.14035 · doi:10.1007/s002220050293
[13] doi:10.1142/S0129167X94000401 · Zbl 0823.14038 · doi:10.1142/S0129167X94000401
[14] doi:10.1007/s002229900028 · Zbl 0960.14031 · doi:10.1007/s002229900028
[15] doi:10.1007/s002220050136 · Zbl 0909.14006 · doi:10.1007/s002220050136
[16] doi:10.2140/gt.2009.13.1779 · Zbl 1159.14002 · doi:10.2140/gt.2009.13.1779
[17] doi:10.1007/s002220050132 · Zbl 0909.14007 · doi:10.1007/s002220050132
[18] doi:10.1017/S1474748008000108 · Zbl 1166.14034 · doi:10.1017/S1474748008000108
[19] doi:10.1007/s00220-004-1067-x · Zbl 1055.81055 · doi:10.1007/s00220-004-1067-x
[20] doi:10.1007/s00222-006-0006-1 · Zbl 1111.14018 · doi:10.1007/s00222-006-0006-1
[21] doi:10.1007/978-3-642-57916-5 · Zbl 0797.14004 · doi:10.1007/978-3-642-57916-5
[22] doi:10.1112/S0010437X06002302 · Zbl 1108.14046 · doi:10.1112/S0010437X06002302
[23] doi:10.1215/S0012-7094-07-13613-5 · Zbl 1117.14055 · doi:10.1215/S0012-7094-07-13613-5
[24] doi:10.1090/S0894-0347-98-00250-1 · Zbl 0912.14004 · doi:10.1090/S0894-0347-98-00250-1
[26] doi:10.1007/BF02101490 · Zbl 0853.14020 · doi:10.1007/BF02101490
[27] doi:10.1090/S0894-0347-10-00670-3 · Zbl 1207.14020 · doi:10.1090/S0894-0347-10-00670-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.