×

Tunneling of massive particles from noncommutative inspired Schwarzschild black hole. (English) Zbl 1235.83064

Summary: We apply the generalization of the Parikh-Wilczek method to the tunneling of massive particles from noncommutative inspired Schwarzschild black holes. By deriving the equation of radial motion of the tunneling particle directly, we calculate the emission rate which is shown to be dependent on the noncommutative parameter besides the energy and mass of the tunneling particle. After equating the emission rate to the Boltzmann factor, we obtain the modified Hawking temperature which relates to the noncommutativity and recovers the standard Hawking temperature in the commutative limit. We also discuss the entropy of the noncommutative inspired Schwarzschild black hole and its difference after and before a massive particle’s emission.

MSC:

83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds
83C65 Methods of noncommutative geometry in general relativity
80A10 Classical and relativistic thermodynamics

References:

[1] Hawking S.W.: Black hole explosions. Nature 248, 30 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[2] Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)] · Zbl 1378.83040 · doi:10.1007/BF02345020
[3] Parikh M.K., Wilczek F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000) [arXiv:hep-th/9907001] · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[4] Parikh M.K.: Gen. Relativ. Gravit. 36, 2419 (2004) [arXiv:hep-th/0405160] · Zbl 1063.83013 · doi:10.1023/B:GERG.0000046850.67053.49
[5] Parikh M.K.: A secret tunnel through the horizon. Int. J. Mod. Phys. D 13, 2351 (2004) · Zbl 1063.83013 · doi:10.1142/S0218271804006498
[6] Zhang J.-Y., Zhao Z.: Hawking radiation of charged particles via tunneling from the Reissner–Nordström black hole. JHEP 10, 055 (2005) · doi:10.1088/1126-6708/2005/10/055
[7] Srinivasan K., Padmanabhan T.: Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999) [arXiv:gr-qc/9812028] · doi:10.1103/PhysRevD.60.024007
[8] Angheben M., Nadalini M., Vanzo L., Zerbini S.: Hawking radiation as tunneling for extremal and rotating black holes. JHEP 05, 014 (2005) [arXiv:hep-th/0503081] · doi:10.1088/1126-6708/2005/05/014
[9] Kerner R., Mann R.B.: Tunneling, temperature, and Taub-NUT black holes. Phys. Rev. D 73, 104010 (2006) [arXiv:gr-qc/0603019] · doi:10.1103/PhysRevD.73.104010
[10] Banerjee R., Majhi B.R.: Quantum tunneling beyond semiclassical approximation. JHEP 06, 095 (2008) · Zbl 1282.83025 · doi:10.1088/1126-6708/2008/06/095
[11] Miao Y.-G., Xue Z., Zhang S.-J.: Massive charged particle’s tunneling from spherical charged black hole. EPL 96, 10008 (2011) [arXiv:1012.0390[hep-th]] · doi:10.1209/0295-5075/96/10008
[12] Seiberg N., Witten E.: String theory and noncommutative geometry. JHEP 09, 032 (1999) [arXiv:hepth/9908142] · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[13] Snyder H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947) · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[14] Snyder H.S.: The electromagnetic field in quantized spacetime. Phys. Rev. 72, 68 (1947) · Zbl 0041.33118 · doi:10.1103/PhysRev.72.68
[15] Doplicher S., Fredenhagen K., Roberts J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39 (1994) · doi:10.1016/0370-2693(94)90940-7
[16] Doplicher S., Fredenhagen K., Roberts J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995) [arXiv:hep-th/0303037] · Zbl 0847.53051 · doi:10.1007/BF02104515
[17] Garay L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145 (1995) [arXiv:gr-qc/9403008] · doi:10.1142/S0217751X95000085
[18] Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 77 (2001) [arXiv:hep-th/0106048] · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[19] Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207 (2003) [arXiv: hep-th/0109162] · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[20] Szabo R.J.: Symmetry, gravity and noncommutativity. Class. Quant. Gravity 23, R199 (2006) [arXiv:hep-th/0606233] · Zbl 1117.83001 · doi:10.1088/0264-9381/23/22/R01
[21] Harikumar E., Rivelles V.O.: Noncommutative gravity. Class. Quant. Gravity 23, 7551 (2006) [arXiv:hep-th/0607115] · Zbl 1133.83370 · doi:10.1088/0264-9381/23/24/024
[22] Chaichian M., Tureanu A., Zet G.: Corrections to Schwarzschild solution in noncommutative gauge theory of gravity. Phys. Lett. B 660, 573 (2008) [arXiv:0710.2075[hep-th]] · Zbl 1246.83151 · doi:10.1016/j.physletb.2008.01.029
[23] Mukherjee P., Saha A.: Deformed Reissner-Nordström solutions in noncommutative gravity. Phys. Rev. D 77, 064014 (2008) [arXiv:0710.5847[hep-th]] · doi:10.1103/PhysRevD.77.064014
[24] ChaichianM. Setare M.R., Tureanu A., Zet G.: On black holes and cosmological constant in noncommutative gauge theory of gravity. JHEP 04, 064 (2008) [arXiv:0711.4546[hep-th]] · Zbl 1246.83150
[25] Kobakhidze A.: Noncommutative corrections to classical black holes. Phys. Rev. D 79, 047701 (2009) [arXiv:0712.0642[gr-qc]] · doi:10.1103/PhysRevD.79.047701
[26] Smailagic A., Spallucci E.: Feynman path integral on the noncommutative plane. J. Phys. A 36, L467 (2003) [arXiv:hep-th/0307217] · Zbl 1042.81044 · doi:10.1088/0305-4470/36/33/101
[27] Smailagic A., Spallucci E.: UV divergence-free QFT on noncommutative plane. J. Phys. A 36, L517 (2003) [arXiv:hep-th/0308193] · Zbl 1041.81593 · doi:10.1088/0305-4470/36/39/103
[28] Smailagic A., Spallucci E.: Lorentz invariance, unitarity and UV-finiteness of QFT on noncommutative spacetime. J. Phys. A 37, 1 (2004) [Erratum-ibid. A 37 (2004) 7169] [arXiv:hep-th/0406174] · Zbl 1062.81138 · doi:10.1088/0305-4470/37/28/008
[29] Nicolini P., Smailagic A., Spallucci E.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006) [arXiv:gr-qc/0510112] · Zbl 1247.83113 · doi:10.1016/j.physletb.2005.11.004
[30] Rizzo T.G.: Noncommutative inspired black holes in extra dimensions. JHEP 09, 021 (2006) [arXiv:hep-ph/0606051] · doi:10.1088/1126-6708/2006/09/021
[31] Ansoldi S., Nicolini P., Smailagic A., Spallucci E.: Noncommutative geometry inspired charged black holes. Phys. Lett. B 645, 261 (2007) [arXiv:gr-qc/0612035] · Zbl 1256.83014 · doi:10.1016/j.physletb.2006.12.020
[32] Spallucci, E., Smailagic, A., Nicolini, P.: Non-commutative geometry inspired higher-dimensional charged black holes. Phys. Lett. B 670, 449 (2009) [arXiv:0801.3519[hep-th]] · Zbl 1256.83014
[33] Smailagic A., Spallucci E.: ”Kerrr” black hole: the lord of the string. Phys. Lett. B 688, 82 (2010) [arXiv:1003.3918[hep-th]] · doi:10.1016/j.physletb.2010.03.075
[34] Modesto L., Nicolini P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010) [arXiv:1005.5605[gr-qc]] · doi:10.1103/PhysRevD.82.104035
[35] Banerjee R., Majhi B.R., Samanta S.: Noncommutative black hole thermodynamics. Phys. Rev. D 77, 124035 (2008) [arXiv:0801.3583[hep-th]] · doi:10.1103/PhysRevD.77.124035
[36] Nozari K., Mehdipour S.H.: Hawking radiation as quantum tunneling from noncommutative Schwarzschild black hole. Class. Quant. Gravity 25, 175015 (2008) [arXiv:0801.4074[gr-qc]] · Zbl 1149.83324 · doi:10.1088/0264-9381/25/17/175015
[37] Banerjee R., Majhi B.R., Modak S.K.: Noncommutative Schwarzschild black hole and area law. Class. Quant. Gravity 26, 085010 (2009) [arXiv:0802.2176[hep-th]] · Zbl 1163.83345 · doi:10.1088/0264-9381/26/8/085010
[38] Banerjee R., Gangopadhyay S., Modak S.K.: Voros product, noncommutative Schwarzschild black hole and corrected area law. Phys. Lett. B 686, 181 (2010) [arXiv:0911.2123[hep-th]] · doi:10.1016/j.physletb.2010.02.034
[39] Nozari K., Mehdipour S.H.: Parikh-Wilczek tunneling from noncommutative higher-dimensional black holes. JHEP 03, 061 (2009) [arXiv:0902.1945[gr-qc]] · Zbl 1181.83130 · doi:10.1088/1126-6708/2009/03/061
[40] Mehdipour S.H.: Charged particles’ tunneling from a noncommutative charged black hole. Int. J. Mod. Phys. A 25, 5543 (2010) [arXiv:1004.1255[gr-qc]] · Zbl 1208.83070 · doi:10.1142/S0217751X10051013
[41] Scholtz F.G., Gouba L., Hafver A., Rohwer C.M.: Formulation, interpretation and application of noncommutative quantum mechanics. J. Phys. A 42, 175303 (2009) [arXiv:0812.2803[math-ph]] · Zbl 1162.81393 · doi:10.1088/1751-8113/42/17/175303
[42] Schupp, P., Solodukhin, S.: Exact black hole solutions in noncommutative gravity. arXiv:0906.2724[hep-th]
[43] Ohl T., Schenkel A.: Cosmological and black hole spacetimes in twisted noncommutative gravity. JHEP 10, 052 (2009) [arXiv:0906.2730[hep-th]] · Zbl 1243.81097 · doi:10.1088/1126-6708/2009/10/052
[44] Aschieri P., Castellani L.: Noncommutative gravity solutions. J. Geom. Phys. 60, 375 (2010) [arXiv:0906.2774[hep-th]] · Zbl 1185.53083 · doi:10.1016/j.geomphys.2009.11.009
[45] Aschieri, P., Di Grezia, E., Esposito, G.: Noncommutative Einstein equations and Seiberg-Witten map. arXiv:1103.3348[hep-th]
[46] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J.: A gravity theory on noncommutative spaces. Class. Quant. Gravity 22, 3511 (2005) [arXiv:hep-th/0504183] · Zbl 1129.83011 · doi:10.1088/0264-9381/22/17/011
[47] Aschieri P., Dimitrijevic M., Meyer F., Wess J.: Noncommutative geometry and gravity. Class. Quant. Gravity 23, 1883 (2006) [arXiv:hep-th/0510059] · Zbl 1091.83022 · doi:10.1088/0264-9381/23/6/005
[48] Nozari K., Fazlpour B.: UV/IR mixing and black hole thermodynamics. Int. J. Mod. Phys. D 17, 55 (2008) [arXiv:0708.1220[gr-qc]] · Zbl 1153.83384 · doi:10.1142/S0218271808011869
[49] Painlevé P.: La mécanique classique er la thorie de relativité. C. R. Acad. Sci. (Paris) 173, 677 (1921)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.