×

On semi-analytical probabilistic finite element method for homogenization of the periodic fiber-reinforced composites. (English) Zbl 1235.74290

Summary: The main aim of this paper is a development of the semi-analytical probabilistic version of the finite element method (FEM) related to the homogenization problem. This approach is based on the global version of the response function method and symbolic integral calculation of basic probabilistic moments of the homogenized tensor and is applied in conjunction with the effective modules method. It originates from the generalized stochastic perturbation-based FEM, where Taylor expansion with random parameters is not necessary now and is simply replaced with the integration of the response functions. The hybrid computational implementation of the system MAPLE with homogenization-oriented FEM code MCCEFF is invented to provide probabilistic analysis of the homogenized elasticity tensor for the periodic fiber-reinforced composites. Although numerical illustration deals with a homogenization of a composite with material properties defined as Gaussian random variables, other composite parameters as well as other probabilistic distributions may be taken into account. The methodology is independent of the boundary value problem considered and may be useful for general numerical solutions using finite or boundary elements, finite differences or volumes as well as for meshless numerical strategies.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties

Software:

Maple; MCCEFF
Full Text: DOI

References:

[1] Fish, Multiscale analytical sensitivity analysis for composite materials, International Journal for Numerical Methods in Engineering 50 pp 1501– (2001) · Zbl 0981.74046 · doi:10.1002/1097-0207(20010228)50:6<1501::AID-NME84>3.0.CO;2-0
[2] Zhang, Multiple spatial and temporal scales method for numerical simulation of non-classical heat conduction problems: one dimensional case, International Journal of Solids and Structures 42 pp 877– (2005) · Zbl 1125.80321 · doi:10.1016/j.ijsolstr.2004.06.054
[3] Clayton, An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization, Journal of Mechanics and Physics of Solids 54 pp 1604– (2006) · Zbl 1120.74389 · doi:10.1016/j.jmps.2006.02.004
[4] Bhangale, Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates, International Journal of Solids and Structures 43 pp 3230– (2006) · Zbl 1120.74597 · doi:10.1016/j.ijsolstr.2005.05.030
[5] Song, Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method, Carbon 44 pp 710– (2006) · doi:10.1016/j.carbon.2005.09.034
[6] Castaneda, Advances in Applied Mechanics 34 (1998)
[7] Ponte Castañeda, Nonlinear composites, Advances in Applied Mechanics 34 pp 171– (1998) · doi:10.1016/S0065-2156(08)70321-1
[8] Friebel, General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions, International Journal of Solids and Structures 43 pp 2513– (2006) · Zbl 1120.74719 · doi:10.1016/j.ijsolstr.2005.06.035
[9] Ma, Influence of fiber’s shape and size on overall elastoplastic property for micropolar composites, International Journal of Solids and Structures 43 pp 3025– (2006) · Zbl 1120.74728 · doi:10.1016/j.ijsolstr.2005.06.057
[10] Idiart, Macroscopic behavior and field fluctuations in viscoplastic composites: second-order estimates versus full-field simulations, Journal of Mechanics and Physics of Solids 54 pp 1029– (2006) · Zbl 1120.74720 · doi:10.1016/j.jmps.2005.11.004
[11] Florence, A rigorous homogenization method for the determination of the overall ultimate strength of periodic discrete media and an application to general hexagonal lattices of beams, European Journal of Mechanics A/Solids 25 pp 72– (2006) · Zbl 1083.74044 · doi:10.1016/j.euromechsol.2005.06.011
[12] Lefik, 3-D finite element analysis of composite beams with parallel fibres, based on homogenization theory, Computational Mechanics 14 pp 2– (1994) · Zbl 0802.73074 · doi:10.1007/BF00350153
[13] Lux, Macroscopic thermal properties of real fibrous materials: volume averaging method and 3D image analysis, International Journal of Heat and Mass Transfer 49 pp 1958– (2006) · Zbl 1189.74031 · doi:10.1016/j.ijheatmasstransfer.2005.09.038
[14] Milton, The Theory of Composites (2002) · Zbl 0993.74002 · doi:10.1017/CBO9780511613357
[15] Kamiński, Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method, International Journal of Solids and Structures 46 (3-4) pp 923– (2009) · Zbl 1215.74066 · doi:10.1016/j.ijsolstr.2008.10.003
[16] Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (2007) · Zbl 1148.74002 · doi:10.1201/9781420010275
[17] Luciano, Hashin-Shtrikman based FE analysis of the elastic behaviour of finite random composite bodies, International Journal of Fracture 137 pp 261– (2006) · Zbl 1197.74085 · doi:10.1007/s10704-005-3067-z
[18] Sakata, Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty, International Journal of Solids and Structures 45 pp 894– (2007) · Zbl 1167.74384 · doi:10.1016/j.ijsolstr.2007.09.008
[19] Tootkaboni, A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties, International Journal for Numerical Methods in Engineering 83 pp 59– (2010) · Zbl 1193.74166
[20] Xu, A stochastic computational method for evaluation of global and local behavior of random elastic media, Computer Methods in Applied Mechanics and Engineering 194 pp 4362– (2005) · Zbl 1091.74007 · doi:10.1016/j.cma.2004.12.001
[21] Bendat, Random Data: Analysis and Measurement Procedures (1971)
[22] Cruz, A parallel Monte-Carlo finite element procedure for the analysis of multicomponent media, International Journal of Numerical Methods in Engineering 38 pp 1087– (1995) · Zbl 0823.73063 · doi:10.1002/nme.1620380703
[23] Kamiński, Numerical homogenization of n-component composites with stochastic interface defects, International Journal for Numerical Methods in Engineering 47 (12) pp 1001– (2000) · Zbl 0985.74054 · doi:10.1002/(SICI)1097-0207(20000220)47:5<1001::AID-NME814>3.0.CO;2-V
[24] Ghanem, Spectral techniques for stochastic finite elements, Archives of Computer Methods in Engineering 4 (1) pp 63– (1997) · Zbl 0953.74608 · doi:10.1007/BF02818931
[25] Liu, Random field finite elements, International Journal for Numerical Methods in Engineering 23 pp 1831– (1986) · Zbl 0597.73075 · doi:10.1002/nme.1620231004
[26] Xiu-Li, Effect of response surface parameter variation on structural reliability estimates, Structural Safety 23 pp 429– (2002)
[27] Sigmund, Materials with prescribed constitutive parameters: an inverse homogenization problem, International Journal of Solids and Structures 31 pp 2313– (1994) · Zbl 0946.74557 · doi:10.1016/0020-7683(94)90154-6
[28] Gitman, Quantification of stochastically stable representative volumes for random heterogeneous media, Archive of Applied Mechanics 75 pp 79– (2006) · Zbl 1119.74342 · doi:10.1007/s00419-005-0411-8
[29] Kanit, Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry, Computer Methods in Applied Mechanics and Engineering 195 pp 3960– (2006) · Zbl 1386.74121 · doi:10.1016/j.cma.2005.07.022
[30] Bensoussan, Asymptotic Analysis for Periodic Structures (1978)
[31] Sanchez-Palencia, Non-homogeneous Media and Vibration Theory (1980) · Zbl 0432.70002
[32] Feller, An Introduction to Probability Theory and Its Applications (1965) · Zbl 0039.13201
[33] Vanmarcke, Random Fields. Analysis and Synthesis (1983)
[34] Christensen, Mechanics of Composite Materials (1979)
[35] Bathe, Finite Element Procedures (1996)
[36] Zienkiewicz, Finite Element Method for Solid and Structural Mechanics (2005) · Zbl 1084.74001
[37] Kamiński, Probabilistic effective characteristics of cables for superconducting coils, Computer Methods in Applied Mechanics and Engineering 188 (1-3) pp 1– (2000) · Zbl 0979.74016 · doi:10.1016/S0045-7825(99)00424-7
[38] Lin, Probabilistic Theory of Structural Dynamics (1967)
[39] Oden, Finite Elements of Nonlinear Continua (1972) · Zbl 0235.73038
[40] Owen, Finite Elements in Plasticity-Theory and Practice (1980) · Zbl 0482.73051
[41] Markovic, Complementary energy based FE modeling of coupled elasto-plastic and damage behavior for continuum microstructure computations, Computer Methods in Applied Mechanics and Engineering 195 pp 5077– (2006) · Zbl 1118.74045 · doi:10.1016/j.cma.2005.05.058
[42] Kamiński, Sensitivity analysis of homogenized characteristics for some elastic composites, Computer Methods in Applied Mechanics and Engineering 192 pp 1973– (2003) · Zbl 1039.74041 · doi:10.1016/S0045-7825(03)00214-7
[43] Noor, Effective thermoelastic and thermal properties of unidirectional fiber-reinforced composites and their sensitivity coefficients, Composite Structures 26 pp 7– (1993) · doi:10.1016/0263-8223(93)90040-W
[44] Chellappa, Layout optimization of structures with finite-sized features using multiresolution analysis, Structural and Multidisciplinary Optimization 26 pp 77– (2004) · Zbl 1243.74136 · doi:10.1007/s00158-003-0306-7
[45] Haftka, Elements of Structural Optimization (1992) · Zbl 0782.73004 · doi:10.1007/978-94-011-2550-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.