×

The nature of Hopf bifurcation for the Gompertz model with delays. (English) Zbl 1235.34191

Summary: We study the influence of time delays on the dynamics of the classical Gompertz model. We consider the models with one discrete delay introduced in two different ways and the model with two delays which generalise those with one delay. We study asymptotic behaviour and bifurcations with respect to the ratio of delays \(\tau=\tau_1/\tau_2\). Our results show that in such model with two delays there is only one stability switch and for a threshold value of bifurcation parameter, Hopf bifurcation (HB) occurs. However, the type of HB, and therefore its stability (i.e. stability of periodic orbits arising due to it), strongly depends on the magnitude of \(\tau\). The function describing stability of HB is periodic with respect to \(\tau\). Within one period of length 4 five changes of HB stability are observed.

MSC:

34K18 Bifurcation theory of functional-differential equations
37N25 Dynamical systems in biology
92C37 Cell biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Gompertz, G., On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies, Philos. Trans. R. Soc. London, 115, 513-585 (1825)
[2] Winsor, C. P., The Gompertz curve as a growth curve, Proc. Natl. Acad. Sci. USA, 1-7 (1932) · JFM 58.0572.01
[3] Laird, A. K., Dynamics of tumour growth, Br. J. Cancer, 18, 490-502 (1964)
[4] Laird, A. K., Dynamics of tumour growth: comparison of growth rates and extrapolation of growth curve to one cell, Br. J. Cancer, 19, 278-291 (1965)
[5] Laird, A. K.; Tyler, S. A.; Barton, A. D., Dynamics of normal growth, Growth, 21, 233-248 (1965)
[6] Hahnfeldt, P.; Panigrahy, D.; Folkman, J.; Hlatky, L., Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59, 4770-4775 (1999)
[7] d’Onofrio, A.; Gandolfi, A., Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191, 159-184 (2004) · Zbl 1050.92039
[8] d’Onofrio, A.; Gandolfi, A., A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Math. Med. Biol., 26, 63-95 (2009) · Zbl 1157.92024
[9] Ledzewicz, U.; Schättler, H., Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46, 1052-1079 (2007) · Zbl 1357.49086
[10] Ledzewicz, U.; Schättler, H., Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. Theoret. Biol., 252, 295-312 (2008) · Zbl 1398.92120
[11] d’Onofrio, A.; Ledzewicz, U.; Maurer, H.; Schättler, H., On optimal delivery of combination therapy for tumors, Math. Biosci., 222, 13-26 (2009) · Zbl 1176.92033
[12] Świerniak, A.; Gala, A.; Gandolfi, A.; d’Onofrio, A., Optimalization of anti-angiogenic therapy as optimal control problem, in: Proc: IASTED Biomechanics 2006 Actapress (2006)
[13] Wheldon, T. E., Mathematical Models in Cancer Research (1988), Adam Hilger: Adam Hilger Bristol, Philadelphia · Zbl 0696.92002
[14] d’Onofrio, A., A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208, 220-235 (2005) · Zbl 1087.34028
[15] d’Onofrio, A.; Fasano, A.; Monechi, B., A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth, Math. Biosci., 230, 45-54 (2011) · Zbl 1219.92052
[16] Hutchinson, G. E., Circular casual systems in ecology, Ann. N.Y. Acad. Sci., 50, 221-246 (1948)
[17] Cunningham, P. J.; Wangersky, W. J., Time Lag in Population Models (1958), Yale · Zbl 0072.37005
[18] Marchuk, G. I., Mathematical Models in Immunology (1980), Nauka: Nauka Moscow, (in Russian) · Zbl 0505.92006
[19] Marchuk, G. I., Mathematical Modelling of Immune Response in Infectious Diseases (1997), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0876.92015
[20] Foryś, U., Interleukin mathematical model of an immune system, J. Biol. Systems, 3, 889-902 (1995)
[21] Foryś, U., Global analysis of Marchuk’s model in a case of weak immune system, Math. Comput. Model., 25, 97-106 (1997) · Zbl 0919.92022
[22] Foryś, U., Global analysis of Marchuk’s model in case of strong immune system, J. Biol. Systems, 8, 331-346 (2000) · Zbl 0980.92018
[23] Foryś, U., Stability and bifurcations for the chronic state in Marchuk’s model of an immune system, J. Math. Anal. Appl., 352, 922-942 (2009) · Zbl 1160.34349
[24] Bodnar, M.; Foryś, U., Behaviour of Marchuk’s model depending on time delay, Int. J. Appl. Math. Comput. Sci., 10, 101-116 (2000)
[25] Bodnar, M.; Foryś, U., A model of immune system with time-dependent immune reactivity, Nonlinear Anal., 70, 1049-1058 (2009) · Zbl 1166.34042
[26] Bodnar, M.; Foryś, U., Angiogenesis model with carrying capacity depending on vessel density, J. Biol. Systems, 17, 1-25 (2009) · Zbl 1369.92013
[27] Byrne, H. M., The effect of time delays on the dynamics of avascular tumour growth, Math. Biosci., 144, 83-117 (1997) · Zbl 0904.92023
[28] Schuster, R.; Schuster, H., Reconstruction models for the Ehrlich Ascites tumor for the mouse, (Arino, O.; Axelrod, D.; Kimmel, M., Mathematical Population Dynamics, vol. 2 (1995), Wuertz: Wuertz Winnipeg, Canada), 335-348
[29] Bodnar, M.; Foryś, U., Three types of simple DDE’s describing tumour growth, J. Biol. Systems, 15, 1-19 (2007)
[30] Bodnar, M.; Foryś, U., Global stability and the Hopf bifurcation for some class of delay differential equation, Math. Meth. Appl. Sci., 31, 1197-1207 (2008) · Zbl 1151.34058
[31] Bodnar, M.; Foryś, U., Time delays in proliferation process for solid avascular tumour, Math. Comput. Model., 37, 1201-1209 (2003) · Zbl 1046.92026
[32] Bodnar, M.; Foryś, U., Time delays in regulatory apoptosis for solid avascular tumour, Math. Comput. Model., 37, 1211-1220 (2003) · Zbl 1047.92025
[33] Piotrowska, M. J., Hopf bifurcation in a solid avascular tumour growth model with two discrete delays, special issue: towards a mathematical description of cancer: analytical, numerical and modelling aspects, Math. Comput. Model., 47, 597-603 (2008) · Zbl 1149.92319
[34] U. Foryś, M.J. Piotrowska, Time delays in solid avascular tumour growth, in: Proceedings of the Tenth National Conference on Application of Mathematics in Biology and Medicine, Swiety Krzyz 22-25 September 2004, 22-25, University of Computer Engineering and Telecommunications in Kielce.; U. Foryś, M.J. Piotrowska, Time delays in solid avascular tumour growth, in: Proceedings of the Tenth National Conference on Application of Mathematics in Biology and Medicine, Swiety Krzyz 22-25 September 2004, 22-25, University of Computer Engineering and Telecommunications in Kielce.
[35] Foryś, U.; Kolev, M., Time delay in proliferation and apoptosis for solid avascular tumour, (Rudnicki, R., Mathematical Modelling of Population Dynamics (2004), Banach Center Publications: Banach Center Publications Warsaw), 187-196 · Zbl 1058.35107
[36] Foryś, U.; Mokwa-Borkowska, A., Solid tumour growth analysis of necrotic core formation, Math. Comput. Model., 42, 593-600 (2005) · Zbl 1080.92039
[37] Agur, A.; Arakelyan, L.; Dauglis, P.; Ginosar, Y., Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Sys. Ser. B, 4, 29-38 (2004) · Zbl 1051.34059
[38] Foryś, U.; Kheifetz, Y.; Kogan, Y., Critical-point analysis for three variable cancer angiogenesis model, Math. Biosci. Eng., 2, 511-526 (2005) · Zbl 1099.34047
[39] Piotrowska, M. J.; Foryś, U., Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382, 180-203 (2011) · Zbl 1237.34139
[40] d’Onofrio, A.; Gatti, F.; Cerrai, P.; Freschi, L., Delay-induced oscillatory dynamics of tumour-immune system interaction, Math. Comput. Model., 51, 572-591 (2010) · Zbl 1190.34088
[41] d’Onofrio, A., On the interaction between the immune system and an exponentially replicating pathogen, Math. Biosci. Eng., 7, 3, 579-602 (2010) · Zbl 1260.92033
[42] Foryś, U., Marchuk’s model of immune system dynamics with application to tumour growth, J. Theor. Med., 4, 85-93 (2002) · Zbl 1059.92031
[43] Lou, J.; Ruggeri, T., A time delay model about AIDS-related cancer: equilibria, cycles and chaotic behavior, Ric. Mat., 56, 195-208 (2007) · Zbl 1150.92007
[44] M. Bodnar, U. Foryś, Z. Szymańska, A model of AIDS-related tumor with time delay, in: Bodnar M., Foryś U. (Eds.), The Proceedings of the Fourteenth National Conference on Application of Mathematics in Biology and Medicine, Lesznon, University of Warsaw, 2008, pp. 12-17.; M. Bodnar, U. Foryś, Z. Szymańska, A model of AIDS-related tumor with time delay, in: Bodnar M., Foryś U. (Eds.), The Proceedings of the Fourteenth National Conference on Application of Mathematics in Biology and Medicine, Lesznon, University of Warsaw, 2008, pp. 12-17.
[45] Foryś, U.; Poleszczuk, J., A delay-differential equation model of HIV related cancer-immune system dynamics, Math. Biosci. Eng. Math., 8, 2, 627-641 (2011) · Zbl 1259.92073
[46] Bodnar, M.; Foryś, U.; Szymańska, Z., Model of AIDS-related tumour with time delay, Appl. Math. (Warsaw), 36, 263-278 (2009) · Zbl 1180.34093
[47] N. Bielczyk, U. Foryś, T. Płatkowski, Dyadic Interactions with Delay, J. Math. Sociology (submitted for publication).; N. Bielczyk, U. Foryś, T. Płatkowski, Dyadic Interactions with Delay, J. Math. Sociology (submitted for publication).
[48] Bodnar, M.; Forś, U.; Poleszczuk, Jan, Analysis of biochemical reactions models with delays, J. Math. Anal. Appl., 376, 74-83 (2011) · Zbl 1205.92030
[49] Piotrowska, M. J., Activator-inhibitor systems with delay and pattern formation, Math. Comput. Model., 42, 123-131 (2005) · Zbl 1080.92013
[50] Erneux, T., Applied Delay Differential Equations (2009), Springer · Zbl 1201.34002
[51] A.J. Lotka, Elements of Physical Biology. Williams & Wilkins Co. 1925, reprint Elements of mathematical biology, New York, Dover Publications Inc, 1956.; A.J. Lotka, Elements of Physical Biology. Williams & Wilkins Co. 1925, reprint Elements of mathematical biology, New York, Dover Publications Inc, 1956. · JFM 51.0416.06
[52] Volterra, V., Variations and fluctuations of the number of individuals in animal species living together, (Animal Ecology (1931), McGraw-Hill), Translated from 1928 edition by R.N. Chapman
[53] Kirschner, D.; Panetta, J. C., Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37, 3, 235-252 (1998) · Zbl 0902.92012
[54] d’Onofrio, A., Tumor-immune system interaction: modeling the tumor-stimulated proliferation of efectors and immunotherapy, Math. Models Methods Appl. Sci., 16, 8, 1375-1401 (2006) · Zbl 1094.92040
[55] Foryś, U.; Waniewski, J.; Zhivkov, P., Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy, J. Biol. Systems, 14, 1, 13-30 (2006) · Zbl 1099.92033
[56] Ważewska-Czyżewska, M.; Lasota, A., Mathematical Problems of Dynamics of Red Blood Cells Production (1976), Matematyka Stosowana VI, pp. 23-40 (in Polish) · Zbl 0363.92012
[57] Ważewska-Czyżewska, M.; Lasota, A.; Mackey, M., Minimizing therapeutically induced anemia, J. Math. Biol., 13, 149-159 (1981) · Zbl 0473.92003
[58] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci., 20, 1179-1207 (2010) · Zbl 1402.92065
[59] Lachowicz, M., Microscopic, mesoscopic and macroscopic descriptions of complex systems, Por. Eng. Mech., 26, 54-60 (2011)
[60] Lachowicz, M., Individually-based Markov processes modeling nonlinear systems in mathematical biology, Nonlinear Anal.: Real World Appl., 12, 2396-2407 (2011) · Zbl 1225.93101
[61] Bellomo, N.; Berestycki, H.; Nadal, J. P., Mathematics and complexity in life and human sciences, Math. Models Methods Appl. Sci., 20, 1391-1395 (2010) · Zbl 1218.92001
[62] Bellomo, N.; Li, N. K.; Maini, P. K., On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18, 593-646 (2008) · Zbl 1151.92014
[63] Oden, J. T.; Hawkins, A.; Prudhomme, S., General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 477-517 (2010) · Zbl 1186.92024
[64] May, R. M., Stability and Complexity in Model Ecosystems (1975), Princeton Univ. Press: Princeton Univ. Press Princeton
[65] Nicholson, A. J., The self adjustment of populations to change, Cold Spring Harb. Symp. Quant. Biol., 22, 153-173 (1957)
[66] Marusic, M.; Bajzer, Z.; Freyer, J. P.; Vuk-Pavlovic, S., Analysis of growth of multicellular tumour spheroids by mathematical models, Cell Prolif., 27, 73-94 (1994)
[67] Demicheli, R.; Foroni, R.; Ingrosso, A.; Pratesi, G.; Soranzo, C.; Tortoreto, M., An exponential-gompertzian description of LoVo cell tumor growth from in vivo and in vitro data, Cancer Res., 49, 6543-6546 (1989)
[68] Mombach, J. C.M.; Lemke, N.; Bodmann, B. E.J.; Idiart, M. A.P., A mean-field theory of cellular growth, Europhys. Lett., 59, 923-928 (2002)
[69] Murray, J. D., Mathematical Biology. 1, An Introduction (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1006.92001
[70] Hale, J. K., Theory of Functional Differential Equations (1997), Springer: Springer New York · Zbl 0189.39904
[71] Diekmann, O.; van Giles, S.; Lunel, S. M.V.; Walter, H. O., Delay Equations (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0826.34002
[72] Hale, J. K.; Lunel, S. M.V., Introduction of Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0787.34002
[73] Foryś, U., Biological delay systems and the Mikhailov criterion of stability, J. Biol. Systems, 12, 1-16 (2004)
[74] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0752.34039
[75] Kuang, Y., Delay Differential Equations with Application in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[76] Piotrowska, M. J., A remark on the ODE with two discrete delays, J. Math. Anal. Appl., 329, 664-676 (2007) · Zbl 1123.34058
[77] Li, X.; Ruan, S.; Wei, J., Stability and bifurcation in delay-differential equations with two delays, J. Math. Anal. Appl., 236, 254-280 (1999) · Zbl 0946.34066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.