×

The mean-value property and \((\alpha ,\beta )\)-harmonicity. (English) Zbl 1235.31008

Let
\[ \Delta_{\alpha, \beta}= (1-|z|^2)\bigg( \sum_{i,j=1}^n (\delta_{i j}- z_i\bar{z}_j)D_i\bar{D}_j+\alpha R +\beta \bar{R}+\alpha\beta \bigg) , \]
where \(R= \sum_{j=1}^n z_j D_j\) and \(D_j= \frac{\partial}{\partial z_j}\).
The solutions of the equation \( \Delta_{\alpha, \beta} f = 0\) are called \((\alpha, \beta)\)-harmonic functions. Such functions have a special mean-value property.
Let \(n+\alpha >0 \), \(n+\beta >0 \), \(n+\alpha + \beta >0\). Let \(B_n\) be the unit ball in \(\mathbb{C}^n\). The authors prove that the functions \(f\in L_1(B_n)\) which have the mean-value property are \((\alpha, \beta)\)-harmonic functions if \(n+\alpha + \beta \leq \rho_0\).
The definition of \(\rho_0\) is given. It is known that \(\rho_0 \in (11{.}025; 11{.}069)\).
The article is motivated by the work of [P. Ahern, M. Flores and W. Rudin, J. Funct. Anal. 111, No. 2, 380–397 (1993; Zbl 0771.32006)], where the case \(\alpha = \beta =0\) was considered.

MSC:

31C05 Harmonic, subharmonic, superharmonic functions on other spaces

Citations:

Zbl 0771.32006
Full Text: DOI

References:

[1] DOI: 10.1007/BF02785582 · Zbl 0957.43007 · doi:10.1007/BF02785582
[2] DOI: 10.2307/2374685 · Zbl 0669.47017 · doi:10.2307/2374685
[3] Rudin, Function Theory in the Unit Ball of \(\mathbb{C}\) (1980) · Zbl 0495.32001 · doi:10.1007/978-1-4613-8098-6
[4] DOI: 10.1215/S0012-7094-76-04365-9 · Zbl 0343.32017 · doi:10.1215/S0012-7094-76-04365-9
[5] Korányi, Contemp. Math. 191 pp 107– (1995) · doi:10.1090/conm/191/02331
[6] DOI: 10.1006/jfan.1998.3337 · Zbl 0922.31003 · doi:10.1006/jfan.1998.3337
[7] DOI: 10.1007/BF02788784 · Zbl 1060.45002 · doi:10.1007/BF02788784
[8] DOI: 10.1006/jfan.1997.3126 · Zbl 0889.43004 · doi:10.1006/jfan.1997.3126
[9] DOI: 10.1215/S0012-7094-80-04722-5 · Zbl 0474.43012 · doi:10.1215/S0012-7094-80-04722-5
[10] DOI: 10.1007/BF01194925 · Zbl 0733.47027 · doi:10.1007/BF01194925
[11] Erdélyi, Higher Transcendental Functions (1953) · Zbl 0051.30303
[12] Arazy, Interaction between Functional Analysis, Harmonic Analysis, and Probability (Columbia, MO, 1994) pp 19– (1996)
[13] DOI: 10.1090/S0002-9939-99-05052-2 · Zbl 0976.31004 · doi:10.1090/S0002-9939-99-05052-2
[14] DOI: 10.1006/jfan.1994.1048 · Zbl 0807.47017 · doi:10.1006/jfan.1994.1048
[15] Andrews, Special Functions (1999) · doi:10.1017/CBO9781107325937
[16] DOI: 10.1006/jfan.1993.1018 · Zbl 0771.32006 · doi:10.1006/jfan.1993.1018
[17] Ahern, Pacific J. Math. 153 pp 1– (1992) · Zbl 0717.31004 · doi:10.2140/pjm.1992.153.1
[18] DOI: 10.1512/iumj.1996.45.1961 · Zbl 0866.32007 · doi:10.1512/iumj.1996.45.1961
[19] Rudin, Functional Analysis (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.